295 research outputs found

    Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response

    Get PDF
    Dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while rise and fixation of mutators occur when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying physical biological mechanisms of stress response and adaptation

    Reviewing the integration of patient data: how systems are evolving in practice to meet patient needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integration of Information Systems (IS) is essential to support shared care and to provide consistent care to individuals – patient-centred care. This paper identifies, appraises and summarises studies examining different approaches to integrate patient data from heterogeneous IS.</p> <p>Methods</p> <p>The literature was systematically reviewed between 1995–2005 to identify articles mentioning patient records, computers and data integration or sharing.</p> <p>Results</p> <p>Of 3124 articles, 84 were included describing 56 distinct projects. Most of the projects were on a regional scale. Integration was most commonly accomplished by messaging with pre-defined templates and middleware solutions. HL7 was the most widely used messaging standard. Direct database access and web services were the most common communication methods. The user interface for most systems was a Web browser. Regarding the type of medical data shared, 77% of projects integrated diagnosis and problems, 67% medical images and 65% lab results. More recently significantly more IS are extending to primary care and integrating referral letters.</p> <p>Conclusion</p> <p>It is clear that Information Systems are evolving to meet people's needs by implementing regional networks, allowing patient access and integration of ever more items of patient data. Many distinct technological solutions coexist to integrate patient data, using differing standards and data architectures which may difficult further interoperability.</p

    Cerebrovascular mental stress reactivity is impaired in hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brachial artery reactivity in response to shear stress is altered in subjects with hypertension. Since endothelial dysfunction is generalized, we hypothesized that carotid artery (CA) reactivity would also be altered in hypertension.</p> <p>Purpose</p> <p>To compare (CA endothelium-dependent vasodilation in response to mental stress in normal and hypertensive subjects.</p> <p>Methods</p> <p>We evaluated CA reactivity to mental stress in 10 young healthy human volunteers (aged 23 ± 4 years), 20 older healthy volunteers (aged 49 ± 11 years) and in 28 patients with essential hypertension (aged 51 ± 13 years). In 10 healthy volunteers and 12 hypertensive subjects, middle cerebral artery (MCA) PW transcranial Doppler was performed before and 3 minutes after mental stress.</p> <p>Results</p> <p>Mental stress by Stroop color word conflict, math or anger recall tests caused CA vasodilation in young healthy subjects (0.61 ± 0.06 to 0.65 ± 0.07 cm, p < 0.05) and in older healthy subjects (0.63 ± 0.06 to 0.66 ± 0.07 cm, p < 0.05), whereas no CA vasodilation occurred in hypertensive subjects (0.69 ± 0.06 to 0.68 ± 0.07 cm; p, NS). CA blood flow in response to mental stress increased in young healthy subjects (419 ± 134 to 541 ± 209 ml, p < 0.01 vs. baseline) and in older healthy subjects (351 ± 114 to 454 ± 136 ml, p < 0.01 vs. baseline) whereas no change in blood flow (444 ± 143 vs. 458 ± 195 ml; p, 0.59) occurred in hypertensive subjects. There was no difference in the CA response to nitroglycerin in healthy and hypertensive subjects. Mental stress caused a significant increase in baseline to peak MCA systolic (84 ± 22 to 95 ± 22 cm/s, p < 0.05), diastolic (42 ± 12 to 49 ± 14 cm/s, p < 0.05) as well as mean (30 ± 13 to 39 ± 13 cm/s, p < 0.05) PW Doppler velocities in normal subjects, whereas no change in systolic (70 ± 18 to 73 ± 22 cm/s, p < 0.05), diastolic (34 ± 14 to 37 ± 14 cm/s, p = ns) or mean velocities (25 ± 9 to 26 ± 9 cm/s, p = ns) occurred in hypertensive subjects, despite a similar increase in heart rate and blood pressure in response to mental stress in both groups.</p> <p>Conclusion</p> <p>Mental stress produces CA vasodilation and is accompanied by an increase in CA and MCA blood flow in healthy subjects. This mental stress induced CA vasodilation and flow reserve is attenuated in subjects with hypertension and may reflect cerebral vascular endothelial dysfunction. Assessment of mental stress induced CA reactivity by ultrasound is a novel method for assessing the impact of hypertension on cerebrovascular endothelial function and blood flow reserve.</p

    Mucoidy, Quorum Sensing, Mismatch Repair and Antibiotic Resistance in Pseudomonas aeruginosa from Cystic Fibrosis Chronic Airways Infections

    Get PDF
    Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung

    Quantification of Epithelial Cell Differentiation in Mammary Glands and Carcinomas from DMBA- and MNU-Exposed Rats

    Get PDF
    Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs) by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6) expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1) and CD49f expression, increased FAK (focal adhesion kinase) activation especially in the CD29hi population, and decreased CD61 (Integrin β3) expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer

    The Escherichia coli SOS Gene dinF Protects against Oxidative Stress and Bile Salts

    Get PDF
    DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS), such as superoxide radical (O2−), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE) family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H2O2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF
    corecore