171 research outputs found
Long-term power-law fluctuation in Internet traffic
Power-law fluctuation in observed Internet packet flow are discussed. The
data is obtained by a multi router traffic grapher (MRTG) system for 9 months.
The internet packet flow is analyzed using the detrended fluctuation analysis.
By extracting the average daily trend, the data shows clear power-law
fluctuations. The exponents of the fluctuation for the incoming and outgoing
flow are almost unity. Internet traffic can be understood as a daily periodic
flow with power-law fluctuations.Comment: 10 pages, 8 figure
Phase Diagram Of The Biham-Middleton-Levine Traffic Model In Three Dimensions
We study numerically the behavior of the Biham-Middleton-Levine traffic model
in three dimensions. Our extensive numerical simulations show that the phase
diagram for this model in three dimensions is markedly different from that in
one and two dimensions. In addition to the full speed moving as well as the
completely jamming phases, whose respective average asymptotic car speeds
equal one and zero, we observe an extensive region of car densities with
a low but non-zero average asymptotic car speed. The transition from this
extensive low average asymptotic car speed region to the completely jamming
region is at least second order. We argue that this low speed region is a
result of the formation of a spatially-limited-extended percolating cluster.
Thus, this low speed phase is present in dimensional
Biham-Middleton-Levine model as well.Comment: Minor clarifications, 1 figure adde
Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods
We propose a cellular automata model for vehicular traffic in cities by
combining (and appropriately modifying) ideas borrowed from the
Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg
(NS) model of highway traffic. We demonstrate a phase transition from the
"free-flowing" dynamical phase to the completely "jammed" phase at a vehicle
density which depends on the time periods of the synchronized signals and the
separation between them. The intrinsic stochasticity of the dynamics, which
triggers the onset of jamming, is similar to that in the NS model, while the
phenomenon of complete jamming through self-organization as well as the final
jammed configurations are similar to those in the BML model. Using our new
model, we have made an investigation of the time-dependence of the average
speeds of the cars in the "free-flowing" phase as well as the dependence of
flux and jamming on the time period of the signals.Comment: 4 pages, REVTEX, 4 eps figures include
SXDF-UDS-CANDELS-ALMA 1.5 arcmin deep survey
We have conducted 1.1 mm ALMA observations of a contiguous or 1.5 arcmin window in the SXDF-UDS-CANDELS. We achieved a 5
sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies
with (for =40K) up to
thanks to the negative K-correction at this wavelength. We detected 5
brightest sources (S/N6) and 18 low-significance sources (5S/N4; these
may contain spurious detections, though). One of the 5 brightest ALMA sources
( mJy) is extremely faint in the WFC3 and
VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able
to uncover a faint dust-obscured population that is invisible in deep
optical/near-infrared surveys. We found a possible [CII]-line emitter at
or a low- CO emitting galaxy within the field, which may allow us
to constrain the [CII] and/or the CO luminosity functions across the history of
the universe.Comment: 4 pages, 2 figures, 1 table, to appear in the proceedings of IAU
Symposium 319 "Galaxies at High Redshift and Their Evolution over Cosmic
Time", eds. S. Kaviraj & H. Ferguso
Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown
A theory of integer quantum Hall effect(QHE) in realistic systems based on
von Neumann lattice is presented. We show that the momentum representation is
quite useful and that the quantum Hall regime(QHR), which is defined by the
propagator in the momentum representation, is realized. In QHR, the Hall
conductance is given by a topological invariant of the momentum space and is
quantized exactly. The edge states do not modify the value and topological
property of in QHR. We next compute distribution of current based
on effective action and find a finite amount of current in the bulk and the
edge, generally. Due to the Hall electric field in the bulk, breakdown of the
QHE occurs. The critical electric field of the breakdown is proportional to
and the proportional constant has no dependence on Landau levels in
our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision
Macroscopic traffic models from microscopic car-following models
We present a method to derive macroscopic fluid-dynamic models from
microscopic car-following models via a coarse-graining procedure. The method is
first demonstrated for the optimal velocity model. The derived macroscopic
model consists of a conservation equation and a momentum equation, and the
latter contains a relaxation term, an anticipation term, and a diffusion term.
Properties of the resulting macroscopic model are compared with those of the
optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The
derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.
Optimizing Traffic Lights in a Cellular Automaton Model for City Traffic
We study the impact of global traffic light control strategies in a recently
proposed cellular automaton model for vehicular traffic in city networks. The
model combines basic ideas of the Biham-Middleton-Levine model for city traffic
and the Nagel-Schreckenberg model for highway traffic. The city network has a
simple square lattice geometry. All streets and intersections are treated
equally, i.e., there are no dominant streets. Starting from a simple
synchronized strategy we show that the capacity of the network strongly depends
on the cycle times of the traffic lights. Moreover we point out that the
optimal time periods are determined by the geometric characteristics of the
network, i.e., the distance between the intersections. In the case of
synchronized traffic lights the derivation of the optimal cycle times in the
network can be reduced to a simpler problem, the flow optimization of a single
street with one traffic light operating as a bottleneck. In order to obtain an
enhanced throughput in the model improved global strategies are tested, e.g.,
green wave and random switching strategies, which lead to surprising results.Comment: 13 pages, 10 figure
Intelligent Controlling Simulation of Traffic Flow in a Small City Network
We propose a two dimensional probabilistic cellular automata for the
description of traffic flow in a small city network composed of two
intersections. The traffic in the network is controlled by a set of traffic
lights which can be operated both in fixed-time and a traffic responsive
manner. Vehicular dynamics is simulated and the total delay experienced by the
traffic is evaluated within specified time intervals. We investigate both
decentralized and centralized traffic responsive schemes and in particular
discuss the implementation of the {\it green-wave} strategy. Our investigations
prove that the network delay strongly depends on the signalisation strategy. We
show that in some traffic conditions, the application of the green-wave scheme
may destructively lead to the increment of the global delay.Comment: 8 pages, 10 eps figures, Revte
Experimental study of pedestrian flow through a bottleneck
In this work the results of a bottleneck experiment with pedestrians are
presented in the form of total times, fluxes, specific fluxes, and time gaps. A
main aim was to find the dependence of these values from the bottleneck width.
The results show a linear decline of the specific flux with increasing width as
long as only one person at a time can pass, and a constant value for larger
bottleneck widths. Differences between small (one person at a time) and wide
bottlenecks (two persons at a time) were also found in the distribution of time
gaps.Comment: accepted for publication in J. Stat. Mec
- …