164 research outputs found
Nonlinear analysis of flexible beams undergoing large rotations Via symbolic computations
In this paper, a two-stage approach is presented for analyzing flexible beams undergoing large rotations. In the first stage, the symbolic forms of equations of motion and the Jacobian matrix are generated by means of MATLAB and written into a MATLAB script file automatically, where the flexible beams are described by the unified formulation presented in our previous paper. In the second stage, the derived equations of motion are solved by means of implicit numerical methods. Several comparison computations are performed. The two-stage approach proves to be much more efficient than pure numerical one
ãã«ã¹è¶ é³æ³¢ãå©çšããååºå¶åŸ¡ã«ããçäœã»é£åã®äœæå·ã»åçµä¿åæè¡ã®éçº
é沢倧åŠæ©æ¢°å·¥åŠç³»é£åã®åçµä¿åã¯äœæž©åãšæŽ»æ§æ°Žåã®äœæžã«ããçååŠåå¿ã®æå¶ãå³ããã®ã§ããã,åçµã®éçšã§çŽ°è(çç¹ç¶)ã¬ãã«ã§ã®ãã¯ãçŸè±¡ãçã,ãããåçš®ã®æ©æ¢°çæå·ãè 質çæå·ãçºçãããèŠå ãšãªã.ãããã£ãŠ,é£åã®å質(颚å³,ãã¯ã¹ãã£ãŒ)ãæãªããªãå¹æçãªå·åŽæè¡ã®éçºãå¿
é ãšãªã.æ¬è¬é¡ã¯ä»¥äžã®èŠ³ç¹ããé²ãããã®ã§ãã,åçµéçšã§è¶
é³æ³¢ãä»äžãããšãšã«ãã,è¶
é³æ³¢ãã£ãããŒã·ã§ã³ã«ããè¡ææ³¢ãçºçãã,ããã«ãã(1)现èå
éå·åŽã®èœåç解é€ãš,(2)现èå
å€ã®æ°·çµæ¶ã®åŸ®çŽ°åãå³ããã®ã§ãã.æçµçã«ã¯,é£åå
šåã®æ°·æ¶ã埮现åãããæ°ããåçµæè¡ã®éçºãç®æããã®ã§ãã.å
·äœçã«ã¯æš¡æ¬é£å(å¯å€©)ããã³é£å(銬éŽè¯)ãäŸè©Šããåçµå®éšãè¡ã,æ°·æ¶ã®çæç¶æ
ãè¶
é³æ³¢åºåããã³å·åŽé床ãšé¢é£ã¥ããŠè¿œç©¶ã,以äžã®ææãåŸã.1.äœæž©åºŠå(0âã-5â)ã«ãããŠè¶
é³æ³¢ãã£ãããŒã·ã§ã³ã®çºçã確èªãã.2.å·åŽé床ã倧ããæ¡ä»¶ã«ãããŠè¶
é³æ³¢ã«ããæ°·çµæ¶ã®åŸ®çŽ°åã®å¹æãèŠåºãã.ãŸã,è¶
é³æ³¢åºåã®å¢å ã«ã€ããŠæ°·æ¶åŸããã³é·åŸ/çåŸæ¯ã¯æžå°ããããšãæããã«ãã.3.è¶
é³æ³¢ã«ããæ°·æ¶ã®åŸ®çŽ°åã®æ©æ§ã«ã€ããŠæ€èšã,é³é¿æµã«ããè©Šæè¡šé¢ã®ç±äŒéä¿é²ä»¥å€ã®èŠå ãããå¯èœæ§ã瀺ããã.4.æ¬å®éšç¯å²ã§ã¯,æ°·æ¶å¶åŸ¡ã«åãŒã溶åæ°äœã®åœ±é¿ã¯å°ãã.5.è¶
é³æ³¢ä»äžã«ãã,氎溶液äžã§æé·ããæ°·çµæ¶ã¯é«æ¬¡ã¢ãŒã åããããšã瀺ããã.6.銬éŽè¯ã®åçµã»è§£åå®éšãè¡ã,è¶
é³æ³¢ä»äžã«ãã,现èå
å€ã®æ°·æ¶ã«ããæ©æ¢°çæå·ã®è»œæžãèªãããã.ããã,é»æ°ã€ã³ããŒãã³ã¹æ³ã«ããèšæž¬ã®çµæ,现èèã®åçµæå·ã¯é²æ¢ã§ããŠããªãããšãå€ã£ã.Freezing can slow down or stop some biological reactions for preserving food. It is also true that the freezing is lethal to keeping the taste of food. During freezing, the extra- and intra-cellular ice formation, osmotic water permeation through cell membrane, deformation of the cell and other behavior occur at microscale and they bring serious injuries connecting to drip and denaturation of protein.A method to actively controlling crystallization is one of promising technique for cryopreservation. The object of this project is to study the effects of ultrasonic irradiation on ice formation during freezing of biological materials. In the experiments, agar gel and/or potato tissue was frozen under irradiation of ultrasound at frequency of 28kHz. The measurements of temperature and the microscopic observation of ice crystals by using fluorescent indicator were carried out.Firstly, the cooling rate of sample augmented according to the increase of the ultrasonic power, since acoustic streaming and flow disturbance due to acoustic cavitation increased. Secondly, it was found that ice structure size decreased with increasing ultrasonic power in case of rapid cooling. Furthermore, the ultrasonically induced effects on freezing was analyzed using local cooling rate defined at freezing front. It was clarified that smaller ice crystals were formed by irradiating ultrasound, comparing with case without ultrasound, under being the same local cooling rate. Therefore, there are effects on ice formation through not only enhancing local cooling rate due to acoustic streaming, but also other relevant phenomena. The mechanism of sonocrystallisation in biological tissue was discussed in relation to ultrasonic power and cooling rate.ç 究課é¡/é åçªå·:16560178, ç 究æé(幎床):2004-2005åºå
žïŒããã«ã¹è¶
é³æ³¢ãå©çšããååºå¶åŸ¡ã«ããçäœã»é£åã®äœæå·ã»åçµä¿åæè¡ã®éçºãç 究ææå ±åæžã課é¡çªå·16560178 (KAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒ)ãããæ¬æããŒã¿ã¯èè
çå ±åæžããäœ
é£ååçµã«ãããäŒç±ãšå質å€åãé£çµããéå±€çç 究
é沢倧åŠæ©æ¢°å·¥åŠç³»é£åã®åçµä¿åã¯,åççã«ã¯,äœæž©åãšæŽ»æ§æ°Žåã®äœæžã«ããå質ã®é·æç¶æãå³ããã®ã§ããã,åçµéçšã§åçš®ã®æ©æ¢°çæå·ãè 質çæå·ã䌎ã.ãããã£ãŠ,é£ååçµã«ãããŠã¯,(1)ãã¯ããªäŒç±çŸè±¡,(2)现èå
å€ã§ã®æ°·æ¶ã®ååšåœ¢æã,现èèãéããæ°Žå移åã«ãã溶液ã®æ¿çž®ãšçŽ°èã®åçž®ãªã©ã®ãã¯ããªçŸè±¡,(3)ãããã®ç¶æ
ã®ããšã§ã®çµç¹ã»çµæã®ç©çã»ååŠçå€å,ã®éå±€çãªåæ±ããå¿
èŠã§ãã,æçµçã«(4)颚å³ããã¯ã¹ãã£ãŒ(é£æ)ãªã©ã®å®èœè©äŸ¡ãžãšç¹ãã.æ¬èª²é¡ã¯ä»¥äžã®èŠ³ç¹ã«ç«ã£ãŠé²ãããã®ã§ãã,ãã°ãéèã®åçµéçšã®Cryo-SEM芳å¯,åçµéçšã®æ°å€ã·ãã¥ã¬ãŒã·ã§ã³,åçµåŸã®é£åã®å質ã®å®éçæšç®ãè¡ã以äžã®ææãåŸã.1.ç·©éå·åŽã®å Žåã«ã¯çç¹ç¶éã®é åã«åœ¢æãããæ°·æ¶ã®æé·ãæ¯é
çã§ãã,æ°Žåã¯çç¹ç¶å
ããçç¹ç¶ééã«ç§»åããŠåçµãã.ããã«å¯ŸããŠæ¥éå·åŽã®å Žåã«ã¯çç¹ç¶å
éšã«å€æ°ã®åŸ®çŽ°æ°·æ¶ãçºçã»æé·ãã.2.ç·©éå·åŽã®å Žåã«ã¯,åçµãé²ãã«ã€ããŠçåç¹ç¶ã¿ã³ãã¯è³ªã®Ca^-ãATPase掻æ§å€ãäœäžãããŸã解ååŸã®ããªãã(液æ±)éãå€ããªã,åçµã«ããæå·ãå¢å€§ãã.3.åçµæå·ã®å ååæã®çµæ,çç¹ç¶ã®è±æ°Žçãã¿ã³ãã¯è³ªã®å€æ§åºŠã,ãŸãçç¹ç¶å€ãã®åçµåºçžçãããªããéãè¡šãæå¹ãªææšãšãªãããšãæããã«ããã.4.çç¹ç¶çŸ€ãããªãæ§é äœã®åçµã¢ãã«ãæ瀺ãã,åçµéçšã«ããã枩床履æŽ,æ°·æ¶ã®ååšåœ¢æãªãã³ã«çç¹ç¶ã®è±æ°Žã»åçž®ã®ç¶æ
ã解æçã«äºæž¬ããããšãå¯èœãšãªã£ã.5.3ããã³4ã®ææãçµã¿åãããããšã«ãã,ãã¯ãäŒç±,ãã¯ãçŸè±¡,åçµåŸã®å質å€åãé£çµããããšãå¯èœãšãªã,åçµã«ããå質å€åã®å®éçäºæž¬ãå®çŸããã.Freezing can slow down or stop some biological reactions for preserving food. It is also true that the freezing is lethal to keeping the taste of food. During freezing, the extra- and intracellular ice formation, osmotic water permeation through cell membrane, deformation of the cell and other behavior occur at microscale and they bring serious injuries connecting to drip and denaturation of protein.In this research project, heat transfer and damage of food during freezing process have been studied analytically and experimentally. In experiments, muscle tissue of tuna was cooled by airblast method. The freezing process of tissue was observed by using a cryo-scanning electron microscope as a function of temperature. The drip after thawing of frozen tissue and Ca-ATPase activity of the myofibril were also measured.Summarizing these results, firstly, the process of ice formation and the dehydration of muscle fiber were clarified with cooling rate. Secondly, it is made clear that the dehydration ration of the muscle fiber is available parameter which described changing in quality of food after freezing, and the frozen solid fraction in extracellular region is the useful parameter to described the rate of drip. Thirdly, the freezing model of muscle tissue was proposed. Through analysis, the temperature distribution in the tissue, the state of ice formation, the microbehavior of intra- and extra-muscle fiber are numerically calculated. On the basis of these results, the accurate prediction of changing in quality of food after freezing can be achieved analytically in conjunction with cooing condition, membrane permeabily, and tissue size.ç 究課é¡/é åçªå·:11650213, ç 究æé(幎床):1999-200
ãã«ã¹é»å Žã«ããåºæ°æ··çžæµã®å¶åŸ¡ãšäŒç±ä¿é²
é沢倧åŠèªç¶ç§åŠç 究ç§èªç¶ãšãã«ã®ãŒã®éçºãå§ããšããããããã®ãšãã«ã®ãŒå¯Ÿçã«ãããŠã¯,ç±äº€æåšã®é«æ§èœåã¯å¿
é ã®èª²é¡ã§ããã,ãã®åºæ¬ã¯äŒç±ä¿é²ã«ãã.æ¬ç 究ã¯,ç²åã®å£é¢è¡çªãå¢çå±€æªä¹±ãªã©ã®äŒç±ä¿é²ã®èŠå ãå
åšããåºæ°æ··çžæµã«åšæé»å Žãä»äžã,ç²åéåãé»æ°æµäœååŠ(EHD)çã«å¶åŸ¡ããããšã«ãã,å£é¢ç±äŒéã®åäžãè¿œæ±ãããã®ã§ãã.å
·äœçã«ã¯,æ¹åœ¢æ³¢ç¶ã®äº€çªé»å Ž,ããã³on,offç¶æ
ãåšæçã«ç¹°ãè¿ãéæ¬ é»å Žã®2çš®é¡ã察象ãšã,é»å Žäžã®ç²åæåãšäŒç±ç¹æ§ãé»å Žã®åšæ³¢æ°ããã³Dutyæ¯(äžåšæäžã®æ£æ¥µé»å Žã®å°å æéã®å²å)ãšé¢é£ã¥ããŠè¿œæ±ããçµæ,以äžã®ç¥èŠãåŸã.(1)åºæ°æ··çžæµã«æ£æ¥µããã³è² 極ã®é»å Žãåãæéééã§äº€çªãããŠä»äžãããš(Duty=0.5),åšæ³¢æ°ã40Hzã®å Žåã«ã¯,ã¯ãŒãã³åã®æ¹åãçãåšæã§å転ãç¹°ãè¿ãããå€ãã®ç²åã¯éçŽäžæ¹ã«çŽç·çã«éåãã.åšæ³¢æ°ãããçã,Dutyæ¯ã0ãŸãã¯1ã«è¿ã¥ããã»ã©,ç²åã¯äž¡å£é¢ãšæŽ»çºã«è¡çªã»åçºãç¹°ãè¿ã.(2)å£é¢è¡çªããç²åã®äžéšã¯å£é¢ãšã®æ¥è§Šã«ããé»è·ãæŸåºããåŸãå£é¢ãšå極æ§ã«åè·é»ãã,ã¯ãŒãã³åã«ããç°æ¥µæ§ã®å¯Ÿåå£ãžç§»è¡ããæ§åãé«é床ãããªèŠ³å¯ã«ãã確èªããã.ãŸãããã®ãããªç²åã®èªå·±è·é»ã«ããé£ã³åºããé»å Žæ¥µæ§ã®å転ã«ããå€éšå¶åŸ¡ãããåªå
ããããã亀çªé»å Žã«ããç²åéåã®å¶åŸ¡ãå°é£ã§ããããšãæããã«ãªã£ã.(3)亀çªé»å Žãä»äžããå Žåãåšæ³¢æ°ãäœããªãã«ã€ããŠç²åã®å£é¢è¡çªã掻çºãšãªã,ããã«ããç±äŒéçãåäžãã.ãŸããDutyãå€åãããå ŽåãDuty=0.5ã§æ¥µå°å€ããšãDutyã0ãŸãã¯1ã«è¿ã¥ãã«ã€ããŠäŒç±ä¿é²å¹æã¯å¢å ã,æçµçã«çŽæµé»å Žã®å€ã«æŒžè¿ãã.(4)éæ¬ é»å Žãä»äžããå Žåãåšæ³¢æ°ã«ããç±äŒéçã®åœ±é¿ã¯æ®ã©èŠããã,Dutyã®å¢å ã«ããäŒç±ä¿é²å¹æã¯å調ã«å¢å ããããšãå€ã£ã.ç 究課é¡/é åçªå·:07750225, ç 究æé(幎床):1995åºå
žïŒç 究課é¡ããã«ã¹é»å Žã«ããåºæ°æ··çžæµã®å¶åŸ¡ãšäŒç±ä¿é²ã課é¡çªå·07750225ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-07750225/ïŒãå å·¥ããŠäœ
Crystal growth and its morphology in the mushy zone
In the solidification of multicomponent alloys, a mushy zone appears between the solid and liquid regions and promotes stable solidification by accepting the rejected solute regionally. In this study, the link between heat transfer and microstructures of the mushy zone has been studied experimentally and theoretically. First, the crystal morphology of the mushy zone at a microscale was observed by using succinonitrileâacetone solution and BiâSn alloys melts. It was found that the mushy zone consists of a leading front, in which the microstructures originate, and a growing region, where solidification proceeds with the fattening of the crystals. Next, the mechanism of dendritic sidebranch evolution was studied, taking into account the interfacial instability. To summarize these results, a macroâmicroscopic model is presented, and the change of crystal morphology at the microscale level was analyzed in relation to cooling rate, initial concentration, and distance from a cold wall
é»å Žãä»äžããåºæ°æ··çžæµã«ããç±äŒéã®ä¿é²ãšå¶åŸ¡
é沢倧åŠå·¥åŠéšç 究課é¡/é åçªå·:03750140, ç 究æé(幎床):1991åºå
žïŒç 究課é¡ãé»å Žãä»äžããåºæ°æ··çžæµã«ããç±äŒéã®ä¿é²ãšå¶åŸ¡ã課é¡çªå·03750140ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-03750140/ïŒãå å·¥ããŠäœ
çäœçŽ°èã®åçµã»è§£åã«ããããã¯ãæåãšçåç¶æ ã®æšå®
é沢倧åŠçå·¥ç 究åçäœçŽ°èã®åçµä¿åã¯äœæž©åãšæŽ»æ§æ°Žåã®äœæžã«ããçåç¶æ
ã®é·æç¶æãå³ããã®ã§ããããå·åŽã®éçšã§åçš®ã®æ©æ¢°çã»è 質çæå·ãçããããããã£ãŠãåçµä¿åã«å¯ŸããäŒç±çç 究ããããŠã¯ã(1)ãã¯ãçãªå·åŽæäœã(2)现èå
å€ã§ã®æ°·æ¶åœ¢æãæ¿çž®ã䌎ã现èã®å€åœ¢ãªã©ã现èã¬ãã«ã§ã®ãã¯ãæåãããã«ã¯(3)ãããã®ç¶æ
ã®ããšã§ååã¬ãã«ã§ã®çŽ°èã®çæ»ãªã©ã®éå±€ããããããé£çµããããšã課é¡ãšãªããæ¬ç 究課é¡ã¯ãã®ãããªèŠ³ç¹ããé²ãããã®ã§ãããå幎床ã¯äž»ãšããŠ(2)ãš(3)ã®é£çµã«é¢ããå®éšçãªè¿œç©¶ãè¡ã£ããæ¬å¹ŽåºŠã¯éå±€ã®äžäœã«ãã(2)ã«ã€ããŠæ€èšããç¹ã«çŽ°èå
ã®æ°·æ¶åœ¢æãããé«ã解å床ã§èšè¿°ããé床è«ã远究ãããšå
±ã«ãæçµç®çã§ãã(1)ã(3)ãé£çµãããã¯ãé床è«ãå±éãããæ¬å¹ŽåºŠã®ç 究ææã¯ä»¥äžã®ããã«éçŽãããã(1) å°éºŠããããã©ã¹ããäŸè©Šããin vitroãªåçµå®éšãè¡ãã现èå€æ°·æ¶ãèè¡šé¢ã§ã®äžåè³ªæ žçæãçºçãããèŠå ã§ããããŸãã现èèã®åçž®ã¯ãã®äœçšãæå¶ããããšãæããã«ãããã(2) èè¡šé¢ã§ã®äžåè³ªæ žçæ(Surfec catalyzed nucleation:SCN)ã¢ãã«ã«äžèšã®åçå åãçµã¿èŸŒãã 现èåçµã¢ãã«ãæ瀺ããããã®æå¹æ§ãæ€èšŒãããã(3) åéå±€ã«å¯Ÿããèšè¿°ãé£çµããããã¯ããªäŒç±éçšã決å®ããæäœãã©ã¡ãŒã¿(å·åŽé床ãå害é²åŸ¡å€ã®æ¿åºŠ)ãªãã³ã«çç©è©Šæ(èééä¿æ°ãçµç¹äœå¯žæ³)ã«å¯ŸããŠåçµåŸã®çŽ°èã®çæ®çãåŸãã¢ãã«ãæ§ç¯ãããããã«ãããã¯ããšãã¯ããé£æãã茞éçŸè±¡è«ã®ç¢ºç«ãæŠãéæããããç 究課é¡/é åçªå·:09750221, ç 究æé(幎床):1997 â 1998åºå
žïŒãçäœçŽ°èã®åçµã»è§£åã«ããããã¯ãæåãšçåç¶æ
ã®æšå®ãç 究ææå ±åæžã課é¡çªå·09750221ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-09750221/)ãå å·¥ããŠäœ
ãã«ã¹é»å Žã«ããåºæ°æ··çžæµã®å¶åŸ¡ãšé»ç±ä¿é²
é沢倧åŠèªç¶ç§åŠç 究ç§èªç¶ãšãã«ã®ãŒã®éçºãå§ããšããããããã®ãšãã«ã®ãŒå¯Ÿçã«ãããŠã¯,ç±äº€æåšã®é«æ§èœåã¯å¿
é ã®èª²é¡ã§ããã,ãã®åºæ¬ã¯äŒç±ä¿é²ã«ãã.æ¬ç 究ã¯,æ°æµäžã«åŸ®çŽ°ãªåºäœç²åãåæ£ãããåºæ°æ··çžãã¯ãæµã«é»å Žãä»äžããããšã«ãã,å£é¢è¿åã§ã®æ°æµä¹±ãã®çæãç²åã®å£é¢è¡çªãªã©ãèœåçã«å¶åŸ¡ã,ããã«ããäŒç±ä¿é²ãå³ãããšãããã®ã§ãã.å
·äœçã«ã¯,çŽäº€å¹³çé»å Žãä»äžãããåºæ°æ··çžãã¯ãæµã察象ã«,äžç©ºã¬ã©ã¹ç²åãäŸè©Šããæµåã»äŒç±å®éšãè¡ã,é»æ°æµäœååŠ(HED)çã«å¶åŸ¡ãããç²åã®éåãæµãå Žããã³ç±äŒéç¹æ§ã«åãŒãç²åå¹æã«ã€ããŠæ€èšããçµæ,以äžã®ç¥èŠãåŸã.1.é»å Žãä»äžãããæµãå Ž(EHDå Ž)ã«ãããŠ,äžç©ºã¬ã©ã¹ç²åã¯æµãæ¹åã«äº€çªããå£é¢åãéåããç¹°ãè¿ãããšã,芳å¯ããã³ç²åéåã¢ãã«ã®äž¡é¢ããæ確ã«ããã.2.ã¯ãŒãã³åã®åŒ·ããè¡šãå°å é»å§ããã³æŽ»åããç²åæ°ãè¡šãã-ãã£ã³ã°æ¯ãå¢å ãããããšã«ããç±äŒéã®åäžãèŠãã,é»å Žä»äžã®æå¹æ§ã確èªããã.3.ã¯ãŒãã³åãåããŠç²åãåã£ãŠæµããå£é¢è¿åã§ã¯,æ°æµé床ã®äœäžããã³ä¹±ã床ã®æžå°ãçããããšãã,ç²åã«ããå¢çå±€æ¹ä¹±å¹æã¯æåŸ
ã§ããªãããšã瀺ããã.4.ç²åŸ,ã-ãã£ã³ã°æ¯,å°å é»å§ã«é¢ãããç±äŒéçãšç²åã«ããç±èŒžééãšã®éã«ã»ãŒäžå®ã®çžé¢ãèªããã,ç²åã«ããç±èŒžéå¹æãäŒç±ä¿é²ã«ãããæ¯é
çãªèŠå ã§ããããšãæãããã«ããã.枩床å¢çå±€å
å€ã§ç²åã«ããåžç±ããã³æŸç±ãååã«è¡ããã ãã®ç±çå¿çæ§ãæããŠããå Žåã«ã¯,ç²åã®ç±å®¹éã倧ããªç²åã»ã©äŒç±ä¿é²ã«æå©ãšãªã.ãŸãæ¯ç±ãäžå®ãšããå Žå,ç²åŸãå°ããªç²åã»ã©ç±èŒžéå¹æã倧ããããšãæãããšãªã£ã.ç 究課é¡/é åçªå·:06750201, ç 究æé(幎床):1994åºå
žïŒç 究課é¡ããã«ã¹é»å Žã«ããåºæ°æ··çžæµã®å¶åŸ¡ãšé»ç±ä¿é²ã課é¡çªå·06750201ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-06750201/ïŒãå å·¥ããŠäœ
è¶ é³æ³¢ãå©çšããååºå¶åŸ¡ã«ããçäœçµç¹ã®ã¬ã©ã¹åä¿åæè¡ã®éçº
é沢倧åŠæ©æ¢°å·¥åŠç³»å»çæè¡ããã€ãªãã¯ãããžãŒã®çºéã«äŒŽã£ãŠçäœçŽ°èã»çµç¹ãåçµä¿åããæè¡ã®ç¢ºç«ãæ±ããããŠãã.åçµä¿åã¯äœæž©åãšæŽ»æ§æ°Žåã®äœæžã«ããçååŠåå¿ã®æå¶ãå³ããã®ã§ããã,åçµã®éçšã§çŽ°èå
å€ã«æ°·æ¶ã圢æãã,ãããåçš®ã®æ©æ¢°çæå·ãè 質çæå·ãçºçãããèŠå ãšãªã.ãã®ãããªåçµæå·ãå®å
šã«åé¿ããããã«ã¯,现èå
ã®æ°Žãçµæ¶åãã,液äœæ§é ããã®ãŸãŸåºå®åãããã¬ã©ã¹åçŸè±¡ãçºçŸãããã®ãçæ³çã§ãã.ããã§æ¬ç 究ã§ã¯,è¶
é³æ³¢ãä»äžããããšã«ããåçµéçšã«ãããæ žçæã®èœåçå¶åŸ¡ã远究ãã.ããªãã¡,è¶
é³æ³¢ã®ä»äžã«ãã,è¶
é³æ³¢ãã£ãããŒã·ã§ã³ã«ããè¡ææ³¢ãçºçãã,ããã«ããæ°ŽçŽ çµåã§åéããŠããæ°Žååã®ã¯ã©ã¹ã¿ãŒã解é¢ãã,éå·åŽã®ä¿é²ãå³ã,æçµç®æšãšããŠã¬ã©ã¹åãç®æããã®ã§ãã.å
·äœçã«ã¯,çäœæš¡æ¬çµç¹ãšããŠå¯å€©ã²ã«ãäŸè©Šããåçµå®éšãè¡ã,éå·åŽåºŠããã³æ°·æ¶ã®çæç¶æ
ãè¶
é³æ³¢åºåããã³å·åŽé床ãšé¢é£ã¥ããŠå®éšçã«è¿œç©¶ã,以äžã®çµæãåŸã.(1)æ¬è£
眮ã§ã¯è¶
é³æ³¢ç
§å°ã«ããéå·åŽã®ä¿é²å¹æã¯èªããããªãã£ã.å·åŽé床ãå°ããããããš,è¶
é³æ³¢ã®åšæ³¢æ°ãäœãããš,ããã³è¶
é³æ³¢åºåãäžè¶³ããŠããããšãªã©ãåå ãšèãããã.ä»åŸ,è£
眮系ã«ã€ããŠèŠçŽããå¿
èŠã§ãã.(2)çµç¹äœè¡šå±€éšã«ãããŠè¶
é³æ³¢ç
§å°ã«ããæ°·æ¶ã®åŸ®çŽ°åã®å¹æãèªãããã.ãŸã,é³é¿æµã«åºã¥ãæ°·æ¶ã®åŸ®çŽ°åã®å¹æã¯å°ãã,æ°·çµæ¶ã®åŸ®çŽ°åã¯äž»ã«è¶
é³æ³¢ãã£ãããŒã·ã§ã³ã®å¹æã§ããããšã瀺ããã.(3)å·åŽç±æµæã«å¯ŸããŠè¶
é³æ³¢åºåãé倧ã«ãªããš,é³æ³¢åžåã«ããçºç±äœçšãé¡åšåã,éã«æ°·çµæ¶ã®è¥å€§åãæãããšãå€ã£ã.(4)ãã®å¯ŸçãšããŠ,è¶
é³æ³¢ã®éæ¬ ç
§å°æ¹åŒãææ¡ã,ãã®æå¹æ§ãæ€èšŒããã.Freezing can slow down or stop some biological reactions for preserving biological cell. It is also true that the freezing is lethal to the living system. During freezing, the extra- and intra-cellular ice formation, osmotic water permeation through cell membrane, deformation of the cell and other behavior occur at microscale and they bring serious injuries connecting to life-and-death of living cell.A method to actively controlling crystallization is one of promising technique for cryopreservation. The object of this project is to study the effects of ultrasonic irradiation on ice formation during freezing of biological materials. In the experiments, agar gel was frozen under various irradiation methods of ultrasound at frequency of 28 kHz. The measurements of temperature and the microscopic observation of ice crystals by using fluorescent indicator were carried out.Firstly, it was found that ultrasound released the supercooling states, and reduced ice crystal size in the tissue. However, the fattning of ice crystal was observed by irradiation of higher ultrasonic power, since the cooling rate was reduced due to absorption of the ultrasonic wave. The ice crystal size in the tissue was clarified in relation to ultrasonic power and tissue size. Secondly, various irradiation methods were tested. It was found that the pulsed irradiation is useful for reducing ice crystal size, since the fattening of ice crystal due to absorption of ultrasonic wave is reduced. The mechanism of sonocrystallization in biological tissue was discussed in relation to ultrasonic power, on-off frequency and irradiation duration.ç 究課é¡/é åçªå·:18560195, ç 究æé(幎床):2006-2007åºå
žïŒãè¶
é³æ³¢ãå©çšããååºå¶åŸ¡ã«ããçäœçµç¹ã®ã¬ã©ã¹åä¿åæè¡ã®éçºãç 究ææå ±åæžã課é¡çªå·18560195 (KAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒ)ãããæ¬æããŒã¿ã¯èè
çå ±åæžããäœ
é»å Žãå©çšãã察æµäŒç±ã®ä¿é²
é沢倧åŠå·¥åŠéšç 究課é¡/é åçªå·:01750183, ç 究æé(幎床):1989åºå
žïŒç 究課é¡ãé»å Žãå©çšãã察æµäŒç±ã®ä¿é²ã課é¡çªå·01750183ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-01750183/ïŒãå å·¥ããŠäœ
- âŠ