5,658 research outputs found

    Electrochemical Behavior of AISI 304SS with Particulate Silica Coating in 0.1 M NaCl

    Get PDF
    This paper presents electrochemical behavior of AISI 304 stainless steel with a silica layer in a stagnant bulk solution of 0.1 M NaCl. Layers composed of densely packed 350 nm diam silica particles were deposited cathodically on stainless steel at a constant voltage by electrophoretic deposition (EPD). Quite smooth and crackfree silica layers less than about 80 μm in thickness were obtained and the thickness of the layer depended linearly on the deposition time. It is proposed that silica layers deposited by EPD can be used as simulated particulate layers to investigate localized corrosion of corrosion-resistant alloys under atmospheric environments. Electrochemical properties of silica-coated stainless steel samples in 0.1 M NaCl were investigated. The cathodic polarization behavior depended on the thickness of the silica layer; the limiting current density for oxygen reduction reaction decreased with increasing silica layer thickness. The effect of the silica layer on anodic polarization behavior was not remarkable.The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement Number: DE-FC28-04RW12252

    Manipulating ionization path in a Stark map: Stringent schemes for the selective field ionization in highly excited Rb Rydberg atoms

    Get PDF
    We have developed a quite stringent method in selectivity to ionize the low angular- momentum (\ell) states which lie below and above the adjacent manifold in highly excited Rb Rydberg atoms. The method fully exploits the pulsed field-ionization characteristics of the manifold states in high slew-rate regime: Specifically the low \ell state below (above) the adjacent manifold is firstly transferred to the lowest (highest) state in the manifold via the adiabatic transition at the first avoided crossing in low slew-rate regime, and then the atoms are driven to a high electric field for ionization in high slew-rate regime. These extreme states of the manifold are ionized at quite different fields due to the tunneling process, resulting in thus the stringent selectivity. Two manipulation schemes to realize this method actually are demonstrated here experimentally.Comment: 10 pages, 4 figure

    Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    Full text link
    Pulsed field ionization of high-nn (90 n\leq n \leq 150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated nn region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing nn, exceeding 80% at nn = 147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show for the first time that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms.Comment: 8 pages, 5 figure

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2z^H_{c2}\parallel \hat{z} and Hc2z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for Hz^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
    corecore