5,658 research outputs found
Electrochemical Behavior of AISI 304SS with Particulate Silica Coating in 0.1 M NaCl
This paper presents electrochemical behavior of AISI 304 stainless steel with a silica layer in a stagnant
bulk solution of 0.1 M NaCl. Layers composed of densely packed 350 nm diam silica particles were deposited
cathodically on stainless steel at a constant voltage by electrophoretic deposition (EPD). Quite smooth and crackfree
silica layers less than about 80 μm in thickness were obtained and the thickness of the layer depended linearly
on the deposition time. It is proposed that silica layers deposited by EPD can be used as simulated particulate layers
to investigate localized corrosion of corrosion-resistant alloys under atmospheric environments. Electrochemical
properties of silica-coated stainless steel samples in 0.1 M NaCl were investigated. The cathodic polarization
behavior depended on the thickness of the silica layer; the limiting current density for oxygen reduction reaction
decreased with increasing silica layer thickness. The effect of the silica layer on anodic polarization behavior was
not remarkable.The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement Number: DE-FC28-04RW12252
Manipulating ionization path in a Stark map: Stringent schemes for the selective field ionization in highly excited Rb Rydberg atoms
We have developed a quite stringent method in selectivity to ionize the low
angular- momentum () states which lie below and above the adjacent
manifold in highly excited Rb Rydberg atoms. The method fully exploits the
pulsed field-ionization characteristics of the manifold states in high
slew-rate regime: Specifically the low state below (above) the adjacent
manifold is firstly transferred to the lowest (highest) state in the manifold
via the adiabatic transition at the first avoided crossing in low slew-rate
regime, and then the atoms are driven to a high electric field for ionization
in high slew-rate regime. These extreme states of the manifold are ionized at
quite different fields due to the tunneling process, resulting in thus the
stringent selectivity. Two manipulation schemes to realize this method actually
are demonstrated here experimentally.Comment: 10 pages, 4 figure
Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms
Pulsed field ionization of high- (90 150) manifold states in
Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in
the field ionization spectra were systematically observed for the investigated
region, where the field values at the lower peak do not almost depend on
the excitation energy in the manifold, while those at the higher peak increase
with increasing excitation energy. The fraction of the higher peak component to
the total ionization signals increases with increasing , exceeding 80% at
= 147. Characteristic behavior of the peak component and the comparison
with theoretical predictions indicate that the higher peak component is due to
the tunneling process. The obtained results show for the first time that the
tunneling process plays increasingly the dominant role at such highly excited
nonhydrogenic Rydberg atoms.Comment: 8 pages, 5 figure
Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi and CeIrSi
We study the normal and the superconducting properties in noncentrosymmetric
heavy fermion superconductors CeRhSi and CeIrSi. For the normal state,
we show that experimentally observed linear temperature dependence of the
resistivity is understood through the antiferromagnetic spin fluctuations near
the quantum critical point (QCP) in three dimensions. For the superconducting
state, we derive a general formula to calculate the upper critical field
, with which we can treat the Pauli and the orbital depairing effect on
an equal footing. The strong coupling effect for general electronic structures
is also taken into account. We show that the experimentally observed features
in , the huge value up to 30(T), the downward
curvatures, and the strong pressure dependence, are naturally understood as an
interplay of the Rashba spin-orbit interaction due to the lack of inversion
symmetry and the spin fluctuations near the QCP. The large anisotropy between
and is explained in terms of
the spin-orbit interaction. Furthermore, a possible realization of the
Fulde-Ferrell- Larkin-Ovchinnikov state for is studied. We
also examine effects of spin-flip scattering processes in the pairing
interaction and those of the applied magnetic field on the spin fluctuations.
We find that the above mentioned results are robust against these effects. The
consistency of our results strongly supports the scenario that the
superconductivity in CeRhSi and CeIrSi is mediated by the spin
fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
- …