4,473 research outputs found
Real-time evolution method and its application to 3 cluster system
A new theoretical method is proposed to describe the ground and excited
cluster states of atomic nuclei. The method utilizes the equation-of-motion of
the Gaussian wave packets to generate the basis wave functions having various
cluster configurations. The generated basis wave functions are superposed to
diagonalize the Hamiltonian. In other words, this method uses the real time as
the generator coordinate. The application to the system as a
benchmark shows that the new method works efficiently and yields the result
consistent with or better than the other cluster models. Brief discussion on
the structure of the excited and states is also made
Solar cell radiation handbook
The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented
Energetics and electronic structure of phenyl-disubstituted polyacetylene: A first-principles study
Phenyl-disubstituted polyacetylene (PDPA) is an organic semiconductor which
has been studied during the last years for its efficient photo-luminescence. In
contrast, the molecular geometry, providing the basis for the electronic and
optical properties, has been hardly investigated. In this paper, we apply a
density-functional-theory based molecular-dynamics approach to reveal the
molecular structure of PDPA in detail. We find that oligomers of this material
are limited in length, being stable only up to eight repeat units, while the
polymer is energetically unfavorable. These facts, which are in excellent
agreement with experimental findings, are explained through a detailed analysis
of the bond lengths. A consequence of the latter is the appearance of
pronounced torsion angles of the phenyl rings with respect to the plane of the
polyene backbone, ranging from up to . We point out
that such large torsion angles do not destroy the conjugation of the
electrons from the backbone to the side phenyl rings, as is evident from the
electronic charge density.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.
Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void
Recent observations of dipole anisotropies show that the velocity of the
Local Group (\Vec v_{\rm G}) induced by the clustering of IRAS galax ies has
an amplitude and direction similar to those of the velocity of Cosmic Microwave
Background dipole anisotropy (\Vec v_{\rm CMB}), but the difference | \Vec
v_{\rm G} - \Vec v_{\rm CMB} | is still km/s, which is about 28% of
|\Vec v_{\rm CMB} |. Here we consider the possibility that the origin of this
difference comes from a hypothetical large-scale local void, with which we can
account for the accelerating behavior of type Ia supernovae due to the spatial
inhomogeneity of the Hubble constant without dark energies and derive the
constraint to the model parameters of the local void. It is found as a result
that the distance between the Local Group and the center of the void must be
Mpc, whose accurate value depends on the background model
parameters.Comment: 13 pages, 1 figure, to be published in ApJ 584, No.2 (2003
Micro-Autoradiography Study of L-Methionine Distribution in Tumor Tissue: Effects of Radiotherapy
開始ページ、終了ページ: 冊子体のページ付
Theory of nonlinear optical properties of phenyl-substituted polyacetylenes
In this paper we present a theoretical study of the third-order nonlinear
optical properties of poly(diphenyl)polyacetylene (PDPA) pertaining to the
third-harmonic-generation (THG) process. We study the aforesaid process in
PDPA's using both the independent electron Hueckel model, as well as
correlated-electron Pariser-Parr-Pople (P-P-P) model. The P-P-P model based
calculations were performed using various configuration interaction (CI)
methods such as the the multi-reference-singles-doubles CI (MRSDCI), and the
quadruples-CI (QCI) methods, and the both longitudinal and the transverse
components of third-order susceptibilities were computed. The Hueckel model
calculations were performed on oligo-PDPA's containing up to fifty repeat
units, while correlated calculations were performed for oligomers containing up
to ten unit cells. At all levels of theory, the material exhibits highly
anisotropic nonlinear optical response, in keeping with its structural
anisotropy. We argue that the aforesaid anisotropy can be divided over two
natural energy scales: (a) the low-energy response is predominantly
longitudinal and is qualitatively similar to that of polyenes, while (b) the
high-energy response is mainly transverse, and is qualitatively similar to that
of trans-stilbene.Comment: 13 pages, 7 figures (included), to appear in Physical Review B (April
15, 2004
Consequence of Hawking radiation from 2d dilaton black holes
We investigate the CGHS model through numerical calculation. The behavior of
the mass function, which we introduced in our previous work as a ``local
mass'', is examined. We found that the mass function takes negative values,
which means that the amount of Hawking radiation becomes greater than the
initial mass of the black hole as in the case of the RST model.Comment: 17pages, 5 figures (three of them are attached, the other 2 figures
are available on request. Some mistakes including typographic errors have
been correcte
A study on correlation effects in two dimensional topological insulators
We investigate correlation effects in two dimensional topological insulators
(TI). In the first part, we discuss finite size effects for interacting systems
of different sizes in a ribbon geometry. For large systems, there are two pairs
of well separated massless modes on both edges. For these systems, we analyze
the finite size effects using a standard bosonization approach. For small
systems, where the edge states are massive Dirac fermions, we use the
inhomogeneous dynamical mean field theory (DMFT) combined with iterative
perturbation theory as an impurity solver to study interaction effects. We show
that the finite size gap in the edge states is renormalized for weak
interactions, which is consistent with a Fermi-liquid picture for small size
TIs. In the second part, we investigate phase transitions in finite size TIs at
zero temperature focusing on the effects of possible inter-edge Umklapp
scattering for the edge states within the inhomogeneous DMFT using the
numerical renormalization group. We show that correlation effects are
effectively stronger near the edge sites because the coordination number is
smaller than in the bulk. Therefore, the localization of the edge states around
the edge sites, which is a fundamental property in TIs, is weakened for strong
coupling strengths. However, we find no signs for "edge Mott insulating states"
and the system stays in the topological insulating state, which is
adiabatically connected to the non-interacting state, for all interaction
strengths smaller than the critical value. Increasing the interaction further,
a nearly homogeneous Mott insulating state is stabilized.Comment: 20 page
- …