260 research outputs found

    Longitudinal muon spin relaxation in high purity aluminum and silver

    Full text link
    The time dependence of muon spin relaxation has been measured in high purity aluminum and silver samples in a longitudinal 2 T magnetic field at room temperature, using time-differential \musr. For times greater than 10 ns, the shape fits well to a single exponential with relaxation rates of \lambda_{\textrm{Al}} = 1.3 \pm 0.2\,(\textrm{stat.}) \pm 0.3\,(\textrm{syst.})\,\pms and \lambda_{\textrm{Ag}} = 1.0 \pm 0.2\,(\textrm{stat.}) \pm 0.2\,(\textrm{syst.})\,\pms

    The pi -> pi pi process in nuclei and the restoration of chiral symmetry

    Full text link
    The results of an extensive campaign of measurements of the pi -> pi pi process in the nucleon and nuclei at intermediate energies are presented. The measurements were motivated by the study of strong pi pi correlations in nuclei. The analysis relies on the composite ratio C_{pi pi}^A, which accounts for the clear effect of the nuclear medium on the (pi pi) system. The comparison of the C_{pi pi}^A distributions for the (pi pi)_{I=J=0} and (pi pi)_{I=0,J=2} systems to the model predictions indicates that the C_{pi pi}^A behavior in proximity of the 2m_pi threshold is explainable through the partial restoration of chiral symmetry in nuclei.Comment: accepted for publication in Nucl. Phys.

    A search for two body muon decay signals

    Get PDF
    Lepton family number violation is tested by searching for μ+e+X0\mu^+\to e^+X^0 decays among the 5.8×108\times 10^8 positive muon decay events analyzed by the TWIST collaboration. Limits are set on the production of both massless and massive X0X^0 bosons. The large angular acceptance of this experiment allows limits to be placed on anisotropic μ+e+X0\mu^+\to e^+X^0 decays, which can arise from interactions violating both lepton flavor and parity conservation. Branching ratio limits of order 10510^{-5} are obtained for bosons with masses of 13 - 80 MeV/c2^2 and with different decay asymmetries. For bosons with masses less than 13 MeV/c2^{2} the asymmetry dependence is much stronger and the 90% limit on the branching ratio varies up to 5.8×1055.8 \times 10^{-5}. This is the first study that explicitly evaluates the limits for anisotropic two body muon decays.Comment: 7 pages, 5 figures, 2 tables, accepted by PR

    General properties of the pion production reaction in nuclear matter

    Full text link
    The pion production reaction π+π+π±\pi^+ \to \pi^+\pi^{\pm} on 45Sc^{45}Sc was studied at incident pion energies of Tπ+T_{\pi^{+}} = 240, 260, 280, 300, and 320 MeV. The experiment was performed using the M11M11 pion-channel at TRIUMF, and multiparticle events, (π+,π+π±\pi^+,\pi^+\pi^{\pm}) and (π+,π+π±p\pi^+,\pi^+\pi^{\pm}p), were detected with the CHAOS spectrometer. Results are reported in the form of both differential and total cross sections, and are compared to theoretical predictions and the reaction phase space. The present investigation of the T-dependence of the π+Aπ+π±A\pi^+ A \to \pi^+\pi^{\pm} A' reaction complements earlier examinations of the A-dependence of the reaction, which was measured using 2H^{2}H, 4He^{4}He, 12C^{12}C, 16O^{16}O, 40Ca^{40}Ca, and 208Pb^{208}Pb targets at \sim280 MeV. Some general properties of the pion-induced pion production reaction in nuclear matter will be presented, based on the combined results of the two studies.Comment: 23 pages, Latex, accepted for publication in Nucl. Phys.

    Measurement of the Muon Decay Parameter delta

    Full text link
    The muon decay parameter delta has been measured by the TWIST collaboration. We find delta = 0.74964 +- 0.00066(stat.) +- 0.00112(syst.), consistent with the Standard Model value of 3/4. This result implies that the product Pmuxi of the muon polarization in pion decay, Pmu, and the muon decay parameter xi falls within the 90% confidence interval 0.9960 < Pmuxi < xi < 1.0040. It also has implications for left-right-symmetric and other extensions of the Standard Model.Comment: Extended to 5 pages. Referee's comments answere

    The ππ\pi\pi interaction in nuclear matter from a study of the π+Aπ+π±A\pi^+ A \to \pi^+ \pi^{\pm} A' reactions

    Full text link
    The pion-production reactions π+Aπ+π±A\pi^+ A \to \pi^+\pi^{\pm} A' were studied on 2H^{2}H, 12C^{12}C, 40Ca^{40}Ca, and 208Pb^{208}Pb nuclei at an incident pion energy of Tπ+T_{\pi^{+}}=283 MeV. Pions were detected in coincidence using the CHAOS spectrometer. The experimental results are reduced to differential cross sections and compared to both theoretical predictions and the reaction phase space. The composite ratio C\cal CππA_{\pi\pi}^A between the π+π±\pi^{+}\pi^{\pm} invariant masses on nuclei and on the nucleon is also presented. Near the 2mπ2m_{\pi} threshold pion pairs couple to (ππ)I=J=0(\pi\pi)_{I=J=0} when produced in the π+π+π\pi^+\to \pi^+\pi^- reaction channel. There is a marked near-threshold enhancement of C\cal Cπ+πA_{\pi^+\pi^-}^A which is consistent with theoretical predictions addressing the partial restoration of chiral symmetry in nuclear matter. Furthermore, the behaviour of C\cal Cπ+πA_{\pi^+\pi^-}^A is well described when the restoration of chiral symmetry is combined with standard P-wave renormalization of pions in nuclear matter. On the other hand, nuclear matter only weakly influences C\cal Cπ+π+A_{\pi^+\pi^+}^A, which displays a flat behaviour throughout the energy range regardless of AA.Comment: 30 pages, 16 figures, PS format, accepted for publication in Nucl. Phys

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review
    corecore