4,435 research outputs found

    Topological Terms in String Theory on Orbifolds

    Get PDF
    We study toroidal orbifold models with topologically invariant terms in the path integral formalism and give physical interpretations of the terms from an operator formalism point of view. We briefly discuss a possibility of a new class of modular invariant orbifold models.Comment: 15pages,LaTex,KOBE-TH-94-0

    A New Mechanism of Spontaneous SUSY Breaking

    Get PDF
    We propose a new mechanism of spontaneous supersymmetry breaking. The existence of extra dimensions with nontrivial topology plays an important role. We investigate new features resulted from the mechanism in two simple supersymmetric Z_2 and U(1) models. One of remarkable features is that there exists a phase in which the translational invariance for the compactified directions is broken spontaneously, accompanying the breakdown of the supersymmetry. The mass spectrum of the models appeared in reduced dimensions is a full of variety, reflecting the highly nontrivial vacuum structure of the models. The Nambu-Goldstone bosons (fermions) associated with breakdown of symmetries are found in the mass spectrum. Our mechanism also yields quite different vacuum structures if models have different global symmetries.Comment: 43 pages, 3 figure

    Hadron-quark continuity induced by the axial anomaly in dense QCD

    Get PDF
    We investigate the interplay between the chiral and diquark condensates on the basis of the Ginzburg-Landau potential with QCD symmetry. We demonstrate that the axial anomaly drives a new critical point at low temperature in the QCD phase diagram and leads to a smooth crossover between the hadronic and color superconducting phases.Comment: 4 pages, 5 figures, to appear in the Proceedings of Quark Matter 2006 held in Shangha

    Identification of hydrogen bonds using quantum electrodynamics

    Get PDF
    A method for the identification of hydrogen bonds was investigated from the viewpoint of the stress tensor density proposed by Tachibana and following other works in this field. Hydrogen bonds are known to exhibit common features with ionic and covalent bonds. In quantum electrodynamics, the covalent bond has been demonstrated to display a spindle structure of the stress tensor density. Importantly, this spindle structure is also seen in the hydrogen bond, although the covalency is considerably weaker than in a typical covalent bond. Distinguishing it from the ionic bond is most imperative for the identification of the hydrogen bond. In the present study, the directionality of the hydrogen bond is investigated as the ionic bond is nearly isotropic, while the hydrogen bond exhibits the directionality. It was demonstrated that the hydrogen bond can be distinguished from the ionic bond using the angle dependence of the largest eigenvalue of the stress tensor density

    Thermal Phase Transitions and Gapless Quark Spectra in Quark Matter at High Density

    Full text link
    Thermal color superconducting phase transitions in three-flavor quark matter at high baryon density are investigated in the Ginzburg-Landau (GL) approach. We constructed the GL potential near the boundary with a normal phase by taking into account nonzero quark masses, electric charge neutrality, and color charge neutrality. We found that the density of states averaged over paired quarks plays a crucial role in determining the phases near the boundary. By performing a weak coupling calculation of the parameters characterizing the GL potential terms of second order in the pairing gap, we show that three successive second-order phase transitions take place as the temperature increases: a modified color-flavor locked phase (ud, ds, and us pairings) -> a ``dSC'' phase (ud and ds pairings) -> an isoscalar pairing phase (ud pairing) -> a normal phase (no pairing). The Meissner masses of the gluons and the number of gapless quark modes are also studied analytically in each of these phases.Comment: 15 pages, 6 figure

    New Critical Point Induced by the Axial Anomaly in Dense QCD

    Get PDF
    We study the interplay between chiral and diquark condensates within the framework of the Ginzburg-Landau free energy, and classify possible phase structures of two and three-flavor massless QCD. The QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and leads to a crossover between the broken chiral symmetry and the color superconducting phase, and, in particular, to a new critical point in the QCD phase diagram.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Melting Pattern of Diquark Condensates in Quark Matter

    Full text link
    Thermal color superconducting phase transitions in high density three-flavor quark matter are investigated in the Ginzburg-Landau approach. Effects of nonzero strange quark mass, electric and color charge neutrality, and direct instantons are considered. Weak coupling calculations show that an interplay between the mass and electric neutrality effects near the critical temperature gives rise to three successive second-order phase transitions as the temperature increases: a modified color-flavor locked (mCFL) phase (ud, ds, and us pairings) -> a ``dSC'' phase (ud and ds pairings) -> an isoscalar pairing phase (ud pairing) -> a normal phase (no pairing). The dSC phase is novel in the sense that while all eight gluons are massive as in the mCFL phase, three out of nine quark quasiparticles are gapless.Comment: minor changes in the text, fig.2 modifie
    • 

    corecore