4 research outputs found

    Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode

    No full text
    Pt nanoparticle (NP)-modified polycrystalline boron-doped diamond (pBDD) disk electrodes have been fabricated and employed as amperometric sensors for the determination of dissolved oxygen concentration in aqueous solution. pBDD columns were cut using laser micro-machining techniques and sealed in glass, in order to make disk electrodes which were then characterized electrochemically. Electrodeposition of Pt onto the diamond electrodes was optimized so as to give the maximum oxygen reduction peak current with the lowest background signal. Pt NPs, >0-10 nm diameter, were found to deposit randomly across the pBDD electrode, with no preference for grain boundaries. The more conductive grains were found to promote the formation of smaller nanoparticles at higher density. With the use of potential step chronoamperometry, in which the potential was stepped to a diffusion-limited value, a four electron oxygen reduction process was found to occur at the Pt NP-modified pBDD electrode. Furthermore the chronoamperometric response scaled linearly with dissolved oxygen concentration, varied by changing the oxygen/nitrogen ratio of gas flowed into solution. The sensor was used to detect dissolved oxygen concentrations with high precision over the pH range 4-10

    Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes

    No full text
    Spatial variations in the electrical and electrochemical activity of microarray electrodes, fabricated entirely from diamond, have been investigated. The arrays contain similar to 50-mu m-diameter boron-doped diamond (BDD) disks spaced 250 mu m apart (center to center) in insulating intrinsic diamond supports, such that the BDD regions are coplanar with the intrinsic diamond. Atomic force microscopy (AFM) imaging of the surface reveals a roughness of no more than 10 nm over the array. Each BDD microdisk within the array contains polycrystalline BDD with a variety of different grains exposed. Using conducting-AFM, the conductivity of the different grains was found to vary within a BDD microdisk. Electrochemical imaging of the electroactivity of the microdisk electrodes using scanning electrochemical microscopy operating in substrate generation-tip collection mode revealed that, under apparently diffusion-limited steady-state conditions, there was a small variation in the response between electrodes. However, the majority of electrodes in the array appeared to show predominantly metallic behavior. For the electrodes that showed a lower activity, all grains within the microdisk supported electron transfer, albeit at different rates, as evidenced by studies on the electrodeposition of metallic silver, at potentials far negative of the flat band potential of oxygen-terminated polycrystalline diamond. The possibility of using these array electrodes for steadystate diffusion-limited measurements in electroanalytical applications is far-reaching. However, caution should be exercised in the kinetic analysis of voltammetric measurements, since wide variations in the electroactivity of individual grains are apparent when the potential is below the diffusion-limited value
    corecore