2 research outputs found

    HYBRID CONTROL OF ELECTRIC VEHICLE LATERAL DYNAMICS STABILIZATION

    Get PDF
    This paper presents a novel method for motion control applied to driver stability system of an electric vehicle with independently driven wheels. By formulating the vehicle dynamics using an approximating the tire-force characteristics into piecewise affine functions, the vehicle dynamics cen be described as a linear hybrid dynamical system to design a hybrid model predictive controller. This controller is expected to make the yaw rate follow the reference ensuring the safety of the car passengers. The vehicle speed is estimated using a multi-sensor data fusion method. Simulation results in Matlab/Simulink have shown that the proposed control scheme takes advantages of electric vehicle and enhances the vehicle stability

    LMI design of a direct yaw moment robust controller based on adaptive body slip angle observer for electric vehicles

    No full text
    A stabilizing observer based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle () observer. In the design strategy of the fuzzy observer, the vehicle dynamics are represented by local models. Initially, local equivalent vehicle models have been built using linear approximations of vehicle dynamics respectively for low and high lateral acceleration operating regimes. The optimal observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall controlled system by using fuzzy rules. These fuzzy rules consequently represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism has been introduced within the fuzzy design and incorporated to improve the accuracy and performance of the controlled system. The controller can then be robustly synthesized based on Linear Matrix Inequalities and using the deviation states model. The controller-observer pair gives good performances in term of stability and presents convincing advantages regarding the real-time implementation issues. The effectiveness of this design approach has been demonstrated in simulations and using real-time experimental data. Copyright © 2013 Praise Worthy Prize - All rights reservedPeer reviewe
    corecore