13 research outputs found
Is classical reality completely deterministic?
The concept of determinism for a classical system is interpreted as the
requirement that the solution to the Cauchy problem for the equations of motion
governing this system be unique. This requirement is generally assumed to hold
for all autonomous classical systems. We give counterexamples of this view. Our
analysis of classical electrodynamics in a world with one temporal and one
spatial dimension shows that the solution to the Cauchy problem with the
initial conditions of a particular type is not unique. Therefore, random
behavior of closed classical systems is indeed possible. This finding provides
a qualitative explanation of how classical strings can split. We propose a
modified path integral formulation of classical mechanics to include
indeterministic systems.Comment: Replace the paper with a revised versio
Stabilization of Hydrodynamic Flows by Small Viscosity Variations
Motivated by the large effect of turbulent drag reduction by minute
concentrations of polymers we study the effects of a weakly space-dependent
viscosity on the stability of hydrodynamic flows. In a recent Letter [Phys.
Rev. Lett. {\bf 87}, 174501, (2001)] we exposed the crucial role played by a
localized region where the energy of fluctuations is produced by interactions
with the mean flow (the "critical layer"). We showed that a layer of weakly
space-dependent viscosity placed near the critical layer can have a very large
stabilizing effect on hydrodynamic fluctuations, retarding significantly the
onset of turbulence. In this paper we extend these observation in two
directions: first we show that the strong stabilization of the primary
instability is also obtained when the viscosity profile is realistic (inferred
from simulations of turbulent flows with a small concentration of polymers).
Second, we analyze the secondary instability (around the time-dependent primary
instability) and find similar strong stabilization. Since the secondary
instability develops around a time-dependent solution and is three-dimensional,
this brings us closer to the turbulent case. We reiterate that the large effect
is {\em not} due to a modified dissipation (as is assumed in some theories of
drag reduction), but due to reduced energy intake from the mean flow to the
fluctuations. We propose that similar physics act in turbulent drag reduction.Comment: 10 pages, 17 figs., REVTeX4, PRE, submitte
Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects.
Mutations in genes encoding ribosomal proteins cause the Minute phenotype in Drosophila and mice, and Diamond-Blackfan syndrome in humans. Here we report two mouse dark skin (Dsk) loci caused by mutations in Rps19 (ribosomal protein S19) and Rps20 (ribosomal protein S20). We identify a common pathophysiologic program in which p53 stabilization stimulates Kit ligand expression, and, consequently, epidermal melanocytosis via a paracrine mechanism. Accumulation of p53 also causes reduced body size and erythrocyte count. These results provide a mechanistic explanation for the diverse collection of phenotypes that accompany reduced dosage of genes encoding ribosomal proteins, and have implications for understanding normal human variation and human disease