3,025 research outputs found
An Optimization Principle for Vascular Radius Including the Effects of Smooth Muscle Tone
AbstractAn optimization principle is proposed for the regulation of vascular morphology. This principle, which extends Murray's law, is based on the hypothesis that blood vessel diameter is controlled by a mechanism that minimizes the total energy required to drive the blood flow, to maintain the blood supply, and to support smooth muscle tone. A theoretical analysis reveals that the proposed principle predicts that the optimum shear stress on the vessel wall due to blood flow increases with blood pressure. This result agrees qualitatively with published findings that the fluid shear stress in veins is significantly smaller than it is in arteries
Mechanics of Tunable Helices and Geometric Frustration in Biomimetic Seashells
Helical structures are ubiquitous in nature and engineering, ranging from DNA
molecules to plant tendrils, from sea snail shells to nanoribbons. While the
helical shapes in natural and engineered systems often exhibit nearly uniform
radius and pitch, helical shell structures with changing radius and pitch, such
as seashells and some plant tendrils, adds to the variety of this family of
aesthetic beauty. Here we develop a comprehensive theoretical framework for
tunable helical morphologies, and report the first biomimetic seashell-like
structure resulting from mechanics of geometric frustration. In previous
studies, the total potential energy is everywhere minimized when the system
achieves equilibrium. In this work, however, the local energy minimization
cannot be realized because of the geometric incompatibility, and hence the
whole system deforms into a shape with a global energy minimum whereby the
energy in each segment may not necessarily be locally optimized. This novel
approach can be applied to develop materials and devices of tunable geometries
with a range of applications in nano/biotechnology
Managers’ Family-Supportive Supervisory Behaviors: A Multilevel Perspective
Using a combination of trait and situational variables we develop a model to explore the antecedents of managers’ family-supportive behaviors. Our model hypotheses were tested using data gathered from a sample of 312 subordinates matched to 92 managers. Hierarchical linear modeling (HLM) of the nested data yielded results that show both an individual manager’s trait (i.e., empathy) and situational variables (i.e., subordinate’s family-to-work conflict and leader–subordinate exchange quality) significantly predicted managers’ supportive behaviors. Additional HLM analyses showed that the manager’s gender (trait) and group work-to-family conflict (situation) moderated the relationship between manager’s empathy and family-supportive behaviors. Our results suggest that managers’ family-supportive behaviors are related to individual characteristics of the manager and to subordinate workgroup contexts, but not to organizational culture
Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks
Streambank erosion is known to be a major source of sediment in streams and rivers. The Bank Stability and Toe Erosion Model (BSTEM) was developed in order to predict streambank retreat due to both fluvial erosion and geotechnical failure. However, few, if any, model evaluations using long-term streambank retreat data have been performed. The objectives of this research were to (1) monitor long-term composite streambank retreat during a hydraulically active period on a rapidly migrating stream, (2) evaluate BSTEM’s ability to predict the measured streambank retreat, and (3) assess the importance of accurate geotechnical, fluvial erosion, and near-bank pore-water pressure properties. The Barren Fork Creek in northeastern Oklahoma laterally eroded 7.8 to 20.9 m along a 100-m length of stream between April and October 2009 based on regular bank location surveys. The most significant lateral retreat occurred in mid- to late-May and September due to a series of storm events, and not necessarily the most extreme events observed during the monitoring period. BSTEM (version 5.2) was not originally programmed to run multiple hydrographs iteratively, so a subroutine was written that automatically input the temporal sequence of stream stage and to lag the water table in the near-bank ground water depending on user settings. Eight BSTEM simulations of the Barren Fork Creek streambank were performed using combinations of the following input data: with and without a water table lag; default BSTEM geotechnical parameters (moderate silt loam) versus laboratory measured geotechnical parameters based on direct shear tests on saturated soil samples; and default BSTEM fluvial erosion parameters versus field measured fluvial erosion parameters from submerged jet tests. Using default BSTEM input values underestimated the actual erosion that occurred. Lagging the water table predicted more geotechnical failures resulting in greater streambank retreat. Using measured fluvial and geotechnical parameters and a water table lag also under predicted retreat (approximately 3.3 m), but did predict the appropriate timing of streambank collapses. The under prediction of retreat was hypothesized to be due to over predicting the critical shear stress of the non-cohesive gravel, under predicting the erodibility of the non-cohesive gravel, and/or under predicting the imposed shear stress acting on the streambank. Current research improving our understanding of shear stress distributions, streambank pore-water pressure dynamics, and methods for estimating excess shear stress parameters for noncohesive soils will be critical for improving BSTEM and other streambank stability models
Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks
Streambank erosion is known to be a major source of sediment in streams and rivers. The Bank Stability and Toe Erosion Model (BSTEM) was developed in order to predict streambank retreat due to both fluvial erosion and geotechnical failure. However, few, if any, model evaluations using long-term streambank retreat data have been performed. The objectives of this research were to (1) monitor long-term composite streambank retreat during a hydraulically active period on a rapidly migrating stream, (2) evaluate BSTEM’s ability to predict the measured streambank retreat, and (3) assess the importance of accurate geotechnical, fluvial erosion, and near-bank pore-water pressure properties. The Barren Fork Creek in northeastern Oklahoma laterally eroded 7.8 to 20.9 m along a 100-m length of stream between April and October 2009 based on regular bank location surveys. The most significant lateral retreat occurred in mid- to late-May and September due to a series of storm events, and not necessarily the most extreme events observed during the monitoring period. BSTEM (version 5.2) was not originally programmed to run multiple hydrographs iteratively, so a subroutine was written that automatically input the temporal sequence of stream stage and to lag the water table in the near-bank ground water depending on user settings. Eight BSTEM simulations of the Barren Fork Creek streambank were performed using combinations of the following input data: with and without a water table lag; default BSTEM geotechnical parameters (moderate silt loam) versus laboratory measured geotechnical parameters based on direct shear tests on saturated soil samples; and default BSTEM fluvial erosion parameters versus field measured fluvial erosion parameters from submerged jet tests. Using default BSTEM input values underestimated the actual erosion that occurred. Lagging the water table predicted more geotechnical failures resulting in greater streambank retreat. Using measured fluvial and geotechnical parameters and a water table lag also under predicted retreat (approximately 3.3 m), but did predict the appropriate timing of streambank collapses. The under prediction of retreat was hypothesized to be due to over predicting the critical shear stress of the non-cohesive gravel, under predicting the erodibility of the non-cohesive gravel, and/or under predicting the imposed shear stress acting on the streambank. Current research improving our understanding of shear stress distributions, streambank pore-water pressure dynamics, and methods for estimating excess shear stress parameters for noncohesive soils will be critical for improving BSTEM and other streambank stability models
Dimensional Control and Formability in Impact Forming
Electromagnetic forming (EMF) is a high speed forming technique that can be used for embossing fine surface features onto sheet metals. Here two coupled experimental and analytical studies show how interface conditions including rebound and friction affect the ability to create a component in impact forming. In the first part of this work high velocity is generated with the Uniform Pressure Actuator (UPA) and impact with a die emboss fine features in a nominally flat component. The primary objective of this work is to develop a modelling facility that guides experimental design nominally flat grooved components. Both shape fidelity and formability aspects are presently considered. In a second short study expansion of a round tube into a square hole is considered. Traditional modelling techniques solve a coupled system of equations with spatially varying electromagnetic fluxes controlling the dynamics of the plastic deformation. Because the magnetic pressure is spatially uniform, the flux equations are obviated from the coupled system rendering them computationally efficient. The calibration of contact mechanics that influence the rebound behaviour of the sheet metal remains as a difficult issue. The interfaces between various sheet metals and the metal die play a critical role in controlling the shape of the final product. The characterization of such an interface using appropriate calibrated friction coefficients is assessed. The role of magnetic pressure in reducing the sheet metal rebound is demonstrated via a comparison between results from mechanical and electromagnetic simulations. The influence of the channel geometry on final shape is illustrated through simulation and experiments
- …