7 research outputs found

    Active Localization using Bernstein Distribution Functions

    Full text link
    In this work, we present a framework that enables a vehicle to autonomously localize a target based on noisy range measurements computed from RSSI data. To achieve the mission objectives, we develop a control scheme composed of two main parts: an estimator and a motion planner. At each time step, new estimates of the target's position are computed and used to generate and update distribution functions using Bernstein polynomials. A metric of the efficiency of the estimator is derived based on the Fisher Information Matrix. Finally, the motion planning problem is formulated to react in real time to new information about the target and improve the estimator's performance.Comment: 6 page

    The Effect of Human Milk on Modulating the Quality of Growth in Preterm Infants

    Get PDF
    Introduction: Human milk is the optimal nutrition for preterm infants. When the mother's own milk is unavailable, donor human milk is recommended as an alternative for preterm infants. The association among early nutrition, body composition and the future risk of disease has recently attracted much interest. The aim of this study was to investigate the effect of human milk on the body composition of preterm infants.Materials and Methods: Very low birth weight infants (VLBW: birth weight <1,500 g) with a gestational age (GA) between 26 and 34 weeks were included. Clinical data, anthropometric measurements and nutritional intake in terms of the volume of human milk were extracted from computerized medical charts. The human milk intake was expressed as a percentage of target fortified donor human milk and/or target fortified fresh mother's milk, compared with the total volume of milk intake during the hospital stay. All included infants underwent anthropometric measurements and body composition analysis (expressed as fat-free mass percentage) at term corrected age (CA) by air-displacement plethysmography. A comparison between infants fed human milk at <50% (group 1) and infants fed human milk at ≥50% of the total volume of milk intake (group 2) was conducted. Multiple linear regression analyses were conducted to explore the modulating effect of fortified human milk on fat-free mass at term CA.Results: Seventy-three VLBW infants were included in the study. The mean weight and GA at birth were 1,248 ± 198 g and 30.2 ± 2.0 weeks, respectively. No differences were found regarding anthropometric measurements at birth, at discharge and at term CA between the two groups. The mean fortified human milk intake was 34.9 ± 12.5 and 80.9 ± 15.5% in groups 1 and 2, respectively (p < 0.001).A multiple regression analysis corrected for sex and birth weight demonstrated that intake of ≥50% fortified human milk was associated with a higher fat-free mass percentage at term CA than intake of <50% fortified human milk.Conclusion: The use of target fortified human milk modulated growth and improved growth quality in vulnerable preterm infants. Thus, the use of donor human milk should be encouraged when fresh mother's milk is insufficient or not available

    Time Coordination and Collision Avoidance Using Leader-Follower Strategies in Multi-Vehicle Missions

    No full text
    In recent years, the increasing popularity of multi-vehicle missions has been accompanied by a growing interest in the development of control strategies to ensure safety in these scenarios. In this work, we propose a control framework for coordination and collision avoidance in cooperative multi-vehicle missions based on a speed adjustment approach. The overall problem is decoupled in a coordination problem, in order to ensure coordination and inter-vehicle safety among the agents, and a collision-avoidance problem to guarantee the avoidance of non-cooperative moving obstacles. We model the network over which the cooperative vehicles communicate using tools from graph theory, and take communication losses and time delays into account. Finally, through a rigorous Lyapunov analysis, we provide performance bounds and demonstrate the efficacy of the algorithms with numerical and experimental results

    Macronutrient content of pooled donor human milk before and after Holder pasteurization

    No full text
    Abstract Background Donor human milk (DHM) is the best alternative for preterm infants when their own mother’s milk is unavailable. DHM should be pasteurized to guarantee microbiological safety; however, this process can influence the macronutrient content. The aim of this study was to investigate the effect of Holder pasteurization (HoP) on DHM macronutrient content. Methods Protein, lactose, lipids (g/100 ml) and energy (kcal/100 ml) of DHM pools were analysed before and after HoP (62.5 °C for 30 min) using mid-infrared spectroscopy (HM analyser Miris AB®). The mean macronutrient content before and after HoP was compared by paired t-test. The percentage decreases (Delta%) were calculated. Results The change in macronutrient content of 460 pools was determined. Protein, lipids and lactose decreased significantly after HoP (0.88 ± 0.20 vs 0.86 ± 0.20 and 2.91 ± 0.89 vs 2.75 ± 0.84 and 7.19 ± 0.41 vs 7.11 ± 0.48 respectively). The Delta% values were − 2.51 ± 13.12, − 4.79 ± 9.47 and − 0.92 ± 5.92 for protein, lipids and lactose, respectively (p ≤ 0.001). Conclusion This study confirms that the macronutrient content of DHM, especially in terms of lipids and protein, is reduced after HoP. Therefore, in order to perform a tailored fortification of DHM, the clinicians need to be aware of the somewhat diminished nutrient content of DHM

    Energy Expenditure, Protein Oxidation and Body Composition in a Cohort of Very Low Birth Weight Infants

    No full text
    The nutritional management of preterm infants is a critical point of care, especially because of the increased risk of developing extrauterine growth restriction (EUGR), which is associated with worsened health outcomes. Energy requirements in preterm infants are simply estimated, so the measurement of resting energy expenditure (REE) should be a key point in the nutritional evaluation of preterm infants. Although predictive formulae are available, it is well known that they are imprecise. The aim of our study was the evaluation of REE and protein oxidation (Ox) in very low birth weight infants (VLBWI) and the association with the mode of feeding and with body composition at term corrected age. Methods: Indirect calorimetry and body composition were performed at term corrected age in stable very low birth weight infants. Urinary nitrogen was measured in spot urine samples to calculate Ox. Infants were categorized as prevalent human milk (HMF) or prevalent formula diet (PFF). Results: Fifty VLBWI (HMF: 23, PFF: 27) were evaluated at 36.48 ± 0.85 post-conceptional weeks. No significant differences were found in basic characteristics or nutritional intake in the groups at birth and at the assessment. No differences were found in the REE of HMF vs. PFF (59.69 ± 9.8 kcal/kg/day vs. 59.27 ± 13.15 kcal/kg/day, respectively). We found statistical differences in the protein-Ox of HMF vs. PFF (1.7 ± 0.92 g/kg/day vs. 2.8 ± 1.65 g/kg/day, respectively, p < 0.01), and HMF infants had a higher fat-free mass (kg) than PFF infants (2.05 ± 0.26 kg vs. 1.82 ± 0.35 kg, respectively, p < 0.01), measured with air displacement plethysmography. Conclusion: REE is similar in infants with a prevalent human milk diet and in infants fed with formula. The HMF infants showed a lower oxidation rate of proteins for energy purposes and a better quality of growth. A greater amount of protein in HMF is probably used for anabolism and fat-free mass deposition. Further studies are needed to confirm our hypothesis
    corecore