146 research outputs found
The effects of atorvastatin therapy on endothelıal function in patients with coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Statins improve the endothelial function in patients with coronary artery disease (CAD). However, they contribute to the substantial decrease in coronary heart disease by reducing plasma cholesterol levels. They also, reduce oxidative stress, stabilize the atherosclerotic plaque and inhibit inflammatory response. These functions of statins have been briefly described as pleiotropic effects. The aim of our study was to evaluate the effect of atorvastatin therapy on endothelial functions in patients with CAD.</p> <p>Methods</p> <p>Fourty-nine patients (40 men, 9 women, mean age 59 +/- 11 years) with diagnosed CAD were selected as the study group. The patients were given 10 mg/day atorvastatin for 12 weeks. If the target cholesterol levels has not been achieved 6 weeks after the treatment, then the daily atorvastatin dosage has been increased. The endothelial function was evaluated by flow mediated dilatation (FMD) of the brachial artery.</p> <p>Results</p> <p>It has been figured out that 12 weeks later, atorvastatin caused a statistically significant decrease in the plasma levels of LDL-cholesterol and total cholesterol (p < 0,0001). Meanwhile, it was determined that the FMD got statistically significant improved 12 weeks after the atorvastatin therapy (8,1%–4,2%, p < 0,001). However there was no statistically significant change in non-endothelium dependent dilatation (NID).</p> <p>Conclusion</p> <p>Endothelium derived vasodilatation (EBD), which was non-invasively detected via brachial artery ultrasonography, had statistically significant improvment within 12 weeks of atorvastatin therapy whereas non-endothelium dependent dilatation (NID) had no change.</p
MicroRNAs as Biomarkers for Myocardial Infarction
MicroRNAs (miRs) are short non-coding RNA molecules involved in post-transcriptional gene regulation by binding to the 3′ untranslated region of a messenger RNA (mRNA), thereby inhibiting the translation or inducing mRNA destabilization. MiRs are generally considered to act as intracellular mediators essential for normal cardiac function, and their deregulated expression profiles have been associated with cardiovascular diseases. Recent studies have revealed the existence of freely circulating miRs in human peripheral blood, which are present in a stable nature. This has raised the possibility that miRs may be released in the circulation and can serve as novel diagnostic markers for acute or chronic human disorders, including myocardial infarction (MI). This review summarizes the recent findings of miRs that fulfill the criteria of candidate biomarkers for MI
- …