7 research outputs found

    Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis

    Get PDF
    Mechanisms governing peripheral CD4+ FOXP3+ regulatory T cells (Treg) survival and homeostasis are multiple suggesting tight and complex regulation of regulatory T cells homeostasis. Some specific factors, such as TGF-β, interleukin-2 (IL-2) and B7 costimulatory molecules have been identified as essentials for maintenance of the peripheral Treg compartment. Conversely, Treg dependency upon classical T cell homeostatic factors such as IL-7 is still unclear. In this work, we formally investigated the role of IL-7 in Treg homeostasis in vivo in murine models. We demonstrated that IL-7 availability regulated the size of peripheral Treg cell pool and thus paralleled the impact of IL-7 on conventional T cell pool. Moreover, we showed that IL-7 administration increased Treg cell numbers by inducing thymic-independent Treg peripheral expansion. Importantly the impact of IL-7 on Treg expansion was detected whether conventional T cells were present or absent as IL-7 directly participates to the peripheral expansion of Treg after adoptive transfer into lymphopenic hosts. Our results definitively identify IL-7 as a central factor contributing to Treg peripheral homeostasis, thus reassembling Treg to other T cell subsets in respect of their need for IL-7 for their peripheral maintenance

    Solar active region magnetogram image dataset for studies of space weather

    No full text
    Abstract In this dataset we provide a comprehensive collection of line-of-sight (LOS) solar photospheric magnetograms (images quantifying the strength of the photospheric magnetic field) from the National Aeronautics and Space Administration’s (NASA’s) Solar Dynamics Observatory (SDO). The dataset incorporates data from three sources and provides SDO Helioseismic and Magnetic Imager (HMI) magnetograms of solar active regions (regions of large magnetic flux, generally the source of eruptive events) as well as labels of corresponding flaring activity. This dataset will be useful for image analysis or solar physics research related to magnetic structure, its evolution over time, and its relation to solar flares. The dataset will be of interest to those researchers investigating automated solar flare prediction methods, including supervised and unsupervised machine learning (classical and deep), binary and multi-class classification, and regression. This dataset is a minimally processed, user configurable dataset of consistently sized images of solar active regions that can serve as a comprehensive image dataset of LOS photospheric magnetograms for solar flare prediction research

    Eosinophils in the Tumor Microenvironment

    No full text
    Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer

    Harnessing innate and adaptive immunity for adoptive cell therapy of renal cell carcinoma

    No full text
    corecore