47 research outputs found
Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption
To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Association Between Intraoperative Noradrenaline Infusion and Outcomes in Older Adult Patients Undergoing Major Non-Cardiac Surgeries: A Retrospective Propensity Score-Matched Cohort Study
Ya-Jun Yang,1,* Yu-Mei Feng,1,* Tong-Xuan Wang,1 Jing-Yun Wang,2 Qian-Yun Pang,1 Hong-Liang Liu1 1Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, People’s Republic of China; 2School of Medicine, Chongqing University, Chongqing, People’s Republic of China*These authors contributed equally to this workCorrespondence: Hong-Liang Liu; Qian-Yun Pang, Department of Anesthesiology, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Shapingba District, Chongqing, 400030, People’s Republic of China, Tel +86 13883686721, Email [email protected]: Noradrenaline (NA) is commonly used intraoperatively to prevent fluid overload and maintain hemodynamic stability. Clinical studies provided inconsistent results concerning the effect of NA on postoperative outcomes. As aging is accompanied with various diseases and has the high possibility of the risk for postoperative complications, we hypothesized that intraoperative NA infusion in older adult patients undergoing major non-cardiac surgeries might potentially exert adverse outcomes.Methods: In this retrospective propensity score-matched cohort study, older adult patients undergoing major non-cardiac surgeries were selected, 1837 receiving NA infusion during surgery, and 1072 not receiving NA. The propensity score matching was conducted with a 1:1 ratio and 1072 patients were included in each group. The primary outcomes were postoperative in-hospital mortality and complications.Results: Intraoperative NA administration reduced postoperative urinary tract infection (OR:0.124, 95% CI:0.016– 0.995), and had no effect on other postoperative complications and mortality, it reduced intraoperative crystalloid infusion (OR:0.999, 95% CI:0.999– 0.999), blood loss (OR: 0.998, 95% CI: 0.998– 0.999), transfusion (OR:0.327, 95% CI: 0.218– 0.490), but increased intraoperative lactate production (OR:1.354, 95% CI:1.051– 1.744), and hospital stay (OR:1.019, 95% CI:1.008– 1.029).Conclusion: Intraoperative noradrenaline administration reduces postoperative urinary tract infection, and does not increase other postoperative complications and mortality, and can be safely used in older adult patients undergoing major non-cardiac surgeries.Keywords: noradrenaline, outcome, older adult, non-cardiac surger
Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis
To provide a further test of the dual binding site hypothesis proposed for acetylcholinesterase (AChE) inhibitor heptylene-linked bis-(9-amino-1,2,3,4-tetrahydroacridine) A7A, short-tether (ethylene-hexylene) homologs A2A-A6A were prepared. En route to these compounds, convenient and scaleable syntheses of useful pharmaceutical intermediate 9-chloro-1,2,3,4-tetrahydroacridine 3 and A7A were developed. AChE and butyrylcholinesterase (BChE) inhibition assays of A2A-A10A confirm that a seven methylene tether (A7A) optimizes AChE inhibition potency and AChE/BChE selectivity. Finally, these studies indicate that simultaneous binding of alkylene-linked 9-amino-1,2,3,4-tetrahydroacridine dimers to the catalytic and peripheral sites of AChE is possible with a tether length as short as 5 methylenes. (C) 1999 Elsevier Science Ltd. All rights reserved
Recommended from our members
Gigatron, a new technology for microwave power devices
The gigatron is a new design concept for microwave power devices. A gated field-emitter array is employed to produce microwave-modulated electron beam directly from the cathode. A ribbon beam configuration is used to mitigate space-change effects and provide efficient output coupling. A traveling wave output coupler is used to obtain optimum coupling to a wide beam. Rf conversion efficiency is estimated at {approximately}75%. Gigatron-family devices have been designed for applications from 3 GHz to 60 GHz frequency, from 30 W microtubes for phased-array antenna drivers to 500 MW drivers for linac colliders. 5 refs., 4 figs., 2 tabs