56 research outputs found

    Survival in amoeba: a major selection pressure on the presence of bacterial copper and zinc resistance determinants?: identification of a "copper pathogenicity island"

    Get PDF
    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Hot disc of the Swift J0243.6+6124 revealed by Insight-HXMT

    Get PDF
    We report on analysis of observations of the bright transient X-ray pulsar (XRP) Swift J0243.6+6124 obtained during its 2017-2018 giant outburst with Insight-HXMT, NuSTAR, and Swift observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disc to a radiation pressure dominated state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to supercritical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars, which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields

    Switches between accretion structures during flares in 4U 1901+03

    Get PDF
    We report on our analysis of the 2019 outburst of the X-ray accreting pulsar 4U 1901+03 observed with Insight-HXMT and NICER. Both spectra and pulse profiles evolve significantly in the decaying phase of the outburst. Dozens of flares are observed throughout the outburst. They are more frequent and brighter at the outburst peak. We find that the flares, which have a duration from tens to hundreds of seconds, are generally brighter than the persistent emission by a factor of similar to 1.5. The pulse-profile shape during the flares can be significantly different from that of the persistent emission. In particular, a phase shift is clearly observed in many cases. We interpret these findings as direct evidence of changes of the pulsed beam pattern, due to transitions between the sub- and supercritical accretion regimes on a short time-scale. We also observe that at comparable luminosities the flares' pulse profiles are rather similar to those of the persistent emission. This indicates that the accretion on the polar cap of the neutron star is mainly determined by the luminosity, i.e. the mass accretion rate

    An experimental-study of the bending behavior of call hybrid composites

    No full text
    The bending behavior and damage characteristics of CALL (Carbon fiber/epoxy/AL Laminate) hybrid composites have been studied by moire interferometry. The shear strain distribution along the cross-section and the forms of damage of bending beams are obtained. The results show that the magnitude of the shear strain in a carbon/epoxy layer is obviously larger than that in a corresponding aluminum layer and the shear strain distribution of a CFRP layer along the cross-section conforms basically to a parabolic distribution curve, as for the shear strain distribution in aluminum layers along the cross-section. Shear damage, either in the interfaces or in carbon-fiber/epoxy laminae, and tensile failure of CFRP laminae in the tension surface represent, respectively, the damage forms of the longitudinal and transverse bending specimen
    corecore