15 research outputs found
Involuntary Monitoring of Sound Signals in Noise Is Reflected in the Human Auditory Evoked N1m Response
Constant sound sequencing as operationalized by repeated stimulation with tones of the same frequency has multiple effects. On the one hand, it activates mechanisms of habituation and refractoriness, which are reflected in the decrease of response amplitude of evoked responses. On the other hand, the constant sequencing acts as spectral cueing, resulting in tones being detected faster and more accurately. With the present study, by means of magnetoencephalography, we investigated the impact of repeated tone stimulation on the N1m auditory evoked fields, while listeners were distracted from the test sounds. We stimulated subjects with trains of either four tones of the same frequency, or with trains of randomly assigned frequencies. The trains were presented either in a silent or in a noisy background. In silence, the patterns of source strength decline originating from repeated stimulation suggested both, refractoriness as well as habituation as underlying mechanisms. In noise, in contrast, there was no indication of source strength decline. Furthermore, we found facilitating effects of constant sequencing regarding the detection of the single tones as indexed by a shortening of N1m latency. We interpret our findings as a correlate of a bottom-up mechanism that is constantly monitoring the incoming auditory information, even when voluntary attention is directed to a different modality
Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism
<p>Abstract</p> <p>Background</p> <p>Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism.</p> <p>Methods</p> <p>We measured transient evoked and induced magnetic gamma-band power and inter-trial phase-locking consistency in the magnetoencephalographic recordings of 16 parents of children with autism, 11 adults with autism and 16 control participants. Source space projection was used to separate left and right hemisphere transient gamma-band measures of power and phase-locking.</p> <p>Results</p> <p>Induced gamma-power at 40 Hz was significantly higher in the parent and autism groups than in controls, while evoked gamma-band power was reduced compared to controls. The phase-locking factor, a measure of phase consistency of neuronal responses with external stimuli, was significantly lower in the subjects with autism and the autism parent group, potentially explaining the difference between the evoked and induced power results.</p> <p>Conclusion</p> <p>These findings, especially in first degree relatives, suggest that gamma-band phase consistency and changes in induced versus induced power may be potentially useful endophenotypes for autism, particularly given emerging molecular mechanisms concerning the generation of gamma-band signals.</p
Electromagnetic Correlates of Musical Expertise in Processing of Tone Patterns
Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training
Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training
Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production
Alternative Transportation Energy
Transportation energy issues are moving to the forefront of the public consciousness in the U.S. and particularly California, and gaining increasing attention from legislators and regulators. The three principal concerns motivating interest in transportation energy are urban air quality, oil dependence, and the threat of global warming. Transportation fuels are a principal contributor to each of these. The transportation sector, mostly motor vehicles, contributes roughly half the urban air pollutants, almost one-third of the carbon dioxide, and consumes over 60% of all petroleum
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Recommended from our members
Model sensitivity evaluation for organic carbon using two multi-pollutant air quality models that simulate regional haze in the southeastern United States
Photochemical grid models are being used in technical analyses by the Visibility Improvement State and Tribal Association of the Southeast (VISTAS), a regional air quality planning organization in the southeastern United States, to support state implementation plans for regional haze and related air quality issues. VISTAS has embarked on a multi-phase process of testing and evaluating regional meteorological, emissions and air quality models that will be used to project visibility improvements as required by the regional haze rule. VISTAS has generated 2002 annual emissions and meteorological inputs for two photochemical grid models, the community multi-scale air quality (CMAQ) and the comprehensive air-quality model with extensions (CAMx), at a 36 km resolution for the continental US and at 12 km resolution for the eastern US. The two models were evaluated using speciated PM measurements from various monitoring networks and detailed analysis was performed for organic carbon (OC) mass using the IMPROVE, STN, and SEARCH networks. The differences in model performance between CMAQ and CAMx were used as a diagnostic tool to investigate performance issues for several compounds. CAMx performed substantially better than CMAQ for OC (defined as 1.4Ămeasured organic carbon) which led to investigations into methods for improving the CMAQ OC model performance. The treatment of secondary organic aerosol (SOA) was identified as an area needing improvements in both models. The impact of replacing the CMAQ SOA parameters with those from CAMx was investigated. Further analysis identified several processes that are potentially important for SOA formation that are not treated in either model including, polymerization of the SOA into non-volatile particles and SOA formation from sesquiterpene, isoprene and other biogenic VOCs. A prototype mechanism for several of these missing processes was developed and the CMAQ SOA module was enhanced to include these SOA formation processes. SOA yields, specifically from biogenic emissions, were increased by the modified SOA module and CMAQ model performance for particulate OC at the IMPROVE, SEARCH, and STN sites in the VISTAS region was improved. © 2006 Elsevier Ltd. All rights reserved