7 research outputs found
Electrostatic Origins of CO2-Increased Hydrophilicity in Carbonate Reservoirs
Injecting CO2 into oil reservoirs appears to be cost-effective and environmentally friendly due to decreasing the use of chemicals and cutting back on the greenhouse gas emission released. However, there is a pressing need for new algorithms to characterize oil/brine/rock system wettability, thus better predict and manage CO2 geological storage and enhanced oil recovery in oil reservoirs. We coupled surface complexation/CO2 and calcite dissolution model, and accurately predicted measured oil-on-calcite contact angles in NaCl and CaCl2 solutions with and without CO2. Contact angles decreased in carbonated water indicating increased hydrophilicity under carbonation. Lowered salinity increased hydrophilicity as did Ca2+. Hydrophilicity correlates with independently calculated oil-calcite electrostatic bridging. The link between the two may be used to better implement CO2 EOR in fields
Arginase activity - a marker of disease status in patients with visceral leishmaniasis in ethiopia.
The underlying mechanisms resulting in the profound immune suppression characteristic of human visceral leishmaniasis (VL) are not fully understood. Here, we tested the hypothesis that arginase, an enzyme associated with immunosuppression, is higher in patients with VL and contributes to impaired T cell responses. We recruited patients with VL before and after treatment and healthy controls and measured the arginase metabolism in the blood of these individuals. Our results show that arginase activity is significantly higher in the blood of patients with active VL as compared to controls. These high levels of arginase decline considerably once the patients are successfully treated. We identified the phenotype of arginase-expressing cells among PBMCs as neutrophils and show that their frequency was increased in PBMCs of patients before treatment; this coincides with reduced levels of L-arginine in the plasma and decreased expression levels of CD3ζ in T cells