19 research outputs found
Diverse Forms of RPS9 Splicing Are Part of an Evolving Autoregulatory Circuit
Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit
Recommended from our members
Hydrogen Storage Performance of Preferentially Oriented Mg/rGO Hybrids
Chemical interactions on the surface of a functional nanoparticle are closely related to its crystal facets, which can regulate the corresponding energy storage properties like hydrogen absorption. In this study, we reported a one-step growth of magnesium (Mg) particles with both close- and nonclose-packed facets, that is, {0001} and {21¯ 1¯ 6} planes, on atomically thin reduced graphene oxide (rGO). The detailed microstructures of Mg/rGO hybrids were revealed by X-ray diffraction, selected-area electron diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analysis. Hydrogen storage performance of Mg/rGO hybrids with different orientations varies: Mg with preferential high-index {21¯ 1¯ 6} crystal surface shows remarkably increased hydrogen absorption up to 6.2 wt % compared with the system exposing no preferentially oriented crystal surfaces showing inferior performance of 5.1 wt % within the first 2 h. First-principles calculations revealed improved hydrogen sorption properties on the {21¯ 1¯ 6} surface with a lower hydrogen dissociation energy barrier and higher stability of hydrogen atoms than those on the {0001} basal plane, supporting the hydrogen uptake experiment. In addition, the hydrogen penetration energy barrier is found to be much lower than that of {0001} because of low surface atom packing density, which might be the most critical process to the hydrogenation kinetics. The experimental and calculation results present a new handle for regulating the hydrogen storage of metal hydrides by controlled Mg facets
The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development.
We present the isolation and functional analysis of a transformer2 homologue Mdtra2 in the housefly Musca domestica. Compromising the activity of this gene by injecting dsRNA into embryos causes complete sex reversal of genotypically female individuals into fertile males, revealing an essential function of Mdtra2 in female development of the housefly. Mdtra2 is required for female-specific splicing of Musca doublesex (Mddsx) which structurally and functionally corresponds to Drosophila dsx, the bottom-most regulator in the sex-determining pathway. Since Mdtra2 is expressed in males and females, we propose that Mdtra2 serves as an essential co-factor of F, the key sex-determining switch upstream of Mddsx. We also provide evidence that Mdtra2 acts upstream as a positive regulator of F supporting genetic data which suggest that F relies on an autocatalytic activity to select and maintain the female path of development. We further show that repression of male courtship behavior by F requires Mdtra2. This function of F and Mdtra2 appears not to be mediated by Mddsx, suggesting that bifurcation of the pathway at this level is a conserved feature in the genetic architecture of Musca and Drosophila