40 research outputs found

    Hopefulness predicts resilience after hereditary colorectal cancer genetic testing: a prospective outcome trajectories study

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>Genetic testing for hereditary colorectal cancer (HCRC) had significant psychological consequences for test recipients. This prospective longitudinal study investigated the factors that predict psychological resilience in adults undergoing genetic testing for HCRC.</p> <p>Methods -</p> <p>A longitudinal study was carried out from April 2003 to August 2006 on Hong Kong Chinese HCRC family members who were recruited and offered genetic testing by the Hereditary Gastrointestinal Cancer Registry to determine psychological outcomes after genetic testing. Self-completed questionnaires were administered immediately before (pre-disclosure baseline) and 2 weeks, 4 months and 1 year after result disclosure. Using validated psychological inventories, the cognitive style of hope was measured at baseline, and the psychological distress of depression and anxiety was measured at all time points.</p> <p>Results -</p> <p>Of the 76 participating subjects, 71 individuals (43 men and 28 women; mean age 38.9 ± 9.2 years) from nine FAP and 24 HNPCC families completed the study, including 39 mutated gene carriers. Four patterns of outcome trajectories were created using established norms for the specified outcome measures of depression and anxiety. These included chronic dysfunction (13% and 8.7%), recovery (0% and 4.3%), delayed dysfunction (13% and 15.9%) and resilience (76.8% and 66.7%). Two logistic regression analyses were conducted using hope at baseline to predict resilience, with depression and anxiety employed as outcome indicators. Because of the small number of participants, the chronic dysfunction and delayed dysfunction groups were combined into a non-resilient group for comparison with the resilient group in all subsequent analysis. Because of low frequencies, participants exhibiting a recovery trajectory (n = 3 for anxiety and n = 0 for depression) were excluded from further analysis. Both regression equations were significant. Baseline hope was a significant predictor of a resilience outcome trajectory for depression (<it>B </it>= -0.24, <it>p </it>< 0.01 for depression); and anxiety (<it>B </it>= -0.11, <it>p </it>= 0.05 for anxiety).</p> <p>Conclusions -</p> <p>The current findings suggest that hopefulness may predict resilience after HCRC genetic testing in Hong Kong Chinese. Interventions to increase the level of hope may be beneficial to the psychological adjustment of CRC genetic testing recipients.</p

    A Rapid and Sensitive Method for Measuring NAcetylglucosaminidase Activity in Cultured Cells

    Get PDF
    A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4- Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies

    The circadian clock regulates inflammatory arthritis

    No full text
    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.-Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis

    Migrating to the Classroom - Online Support for the 2005 Beginning Teacher Alumni of UNE: Final Report for the Higher Education Innovation Program of the Education Alumni Support Project (EdASP)

    No full text
    In 2005 the UNE Education Alumni Support Project provided online support for UNEgraduand and later graduate beginning teachers as they commenced their careers.Beginning teachers may find full-time work as permanent or contract workers, or,part-time employment as casual, relief or support teachers. EdASP was not designedto take the place of any support structures presently in place for beginning teachersbut rather to supplement these.We were aware that many beginning teachers did not get the support that theyneeded. We were aware that UNE graduates were relatively more likely to go intomarginal settings such as rural and isolated schools and also into hard-to-staff schoolsperhaps necessitating extra support. We also knew that UNE internal and externalgraduates were very familiar with online work and specifically knew how to usediscussion fora based on WebCT software. Our main motivation to develop theproject was to see if beginning teachers could be supported online

    The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock

    No full text
    Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (TH2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial infection affects efficiency of worm expulsion, with strong TH2 bias and early expulsion in morning-infected mice. Conversely, mice infected at the start of the night show delayed resistance to infection, and this is associated with feeding-driven metabolic cues, such that feeding restriction to the day-time in normally nocturnal-feeding mice disrupts parasitic expulsion kinetics. We deleted the circadian regulator BMAL1 in antigen-presenting dendritic cells (DCs) in vivo and found a loss of time-of-day dependency of helminth expulsion. RNAseq analyses revealed that IL-12 responses to worm antigen by circadian-synchronised DCs were dependent on BMAL1. Therefore, we find that circadian machinery in DCs contributes to the TH1/TH2 balance, and that environmental, or genetic perturbation of the DC clock results in altered parasite expulsion kinetics
    corecore