94 research outputs found
Investigation of Compton scattering for gamma beam intensity measurements and perspectives at ELI-NP
Compton γ-ray sources have been in operation for over 30 years with new facilities being under construction or proposed. The gamma beam system under implementation at the Extreme Light Infrastructure - Nuclear Physics facility in Romania will deliver brilliant γ-ray beams with energies up to 19.5 MeV. Several instruments for measuring the parameters of the γ-ray beam are under development at ELI-NP. One of these instruments based on a High Purity Germanium detector is routinely used for beam energy measurements at other facilities. Here we investigate the use of a High Purity Germanium detector to continuously monitor the intensity of the ELI-NP gamma beam by measuring the inelastic scattering of photons. This method relies on both experimental and simulated data and it has been successfully tested during a recent experiment at the High Intensity γ-ray Source facility
Identification of the crossing point at N=21 between normal and intruder configurations
The beta(-) decay of Mg-34 was used to study the Al-34 nucleus through. spectroscopy at the Isotope Separator On-Line facility of CERN. Previous studies identified two beta-decaying states in Al-34 having spin-parity assignments J(pi) = 4(-) dominated by the normal configuration pi(d(5/2))(-1)circle times nu(f(7/2)) and J(pi) = 1(+) by the intruder configuration pi(d(5/2))(-1) circle times nu(d(3/2))(-1) (f(7/2))(2). Their unknown ordering and relative energy have been the subject of debate for the placement of Al-34 inside or outside the N = 20 "island of inversion." We report here that the 1(+) intruder lies only 46.6 keV above the 4(-) ground state. In addition, a new half-life of T-1/2 = 44.9(4) ms, that is twice as long as the previously measured 20(10) ms, has been determined for Mg-34. Large-scale shell-model calculations with the recently developed SDPF-U-MIX interaction are compared with the new data and used to interpret the mechanisms at play at the very border of the N = 20 island of inversion.Peer reviewe
Beta-delayed proton emission from 20Mg
Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( , )19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms
Beta-delayed neutron spectroscopy of In
The decay properties of In were studied in detail at the ISOLDE Decay
Station (IDS). The implementation of the Resonance Ionization Laser Ion Source
(RILIS) allowed separate measurements of its ground state (In)
and isomer (In). With the use of -delayed neutron and
spectroscopy, the decay strengths above the neutron separation energy
were quantified in this neutron-rich nucleus for the first time. The allowed
Gamow-Teller transition was located at 5.92 MeV in the
In decay with a logft = 4.7(1). In addition, several neutron-unbound
states were populated at lower excitation energies by the First-Forbidden
decays of In. We assigned spins and parities to those
neutron-unbound states based on the -decay selection rules, the logft
values, and systematics
133In: A Rosetta Stone for decays of r-process nuclei
The decays from both the ground state and a long-lived isomer of
In were studied at the ISOLDE Decay Station (IDS). With a hybrid
detection system sensitive to , , and neutron spectroscopy, the
comparative partial half-lives (logft) have been measured for all their
dominant -decay channels for the first time, including a low-energy
Gamow-Teller transition and several First-Forbidden (FF) transitions. Uniquely
for such a heavy neutron-rich nucleus, their decays selectively
populate only a few isolated neutron unbound states in Sn. Precise
energy and branching-ratio measurements of those resonances allow us to
benchmark -decay theories at an unprecedented level in this region of
the nuclear chart. The results show good agreement with the newly developed
large-scale shell model (LSSM) calculations. The experimental findings
establish an archetype for the decay of neutron-rich nuclei southeast
of Sn and will serve as a guide for future theoretical development
aiming to describe accurately the key decays in the rapid-neutron
capture (r-) process
- …