8,192 research outputs found

    Vibrational excitation of diatomic molecular ions in strong-field ionization of diatomic molecules

    Full text link
    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse.Comment: 4 pages, 4 figure

    Comparative Effectiveness of Step-up Therapies in Children with Asthma Prescribed Inhaled Corticosteroids : A Historical Cohort Study

    Get PDF
    This work was supported by the Respiratory Effectiveness Group. Acknowledgments We thank the Respiratory Effectiveness Group for funding this work, Annie Burden for assistance with statistics, and Simon Van Rysewyk and Lisa Law for assistance with medical writing.Peer reviewedPostprin

    Bioresorbable Polylactide Interbody Implants in an Ovine Anterior Cervical Discectomy and Fusion Model: Three-Year Results

    Get PDF
    Study Design. In vivo study of anterior discectomy and fusion using a bioresorbable 70:30 poly(l-lactide-co-d,l-lactide) interbody implant in an ovine model. Objective. To evaluate the efficacy of the polylactide implant to function as an interbody fusion device, and to assess the tissue reaction to the material during the resorption process. Summary of Background Data. The use of polylactide as a cervical interbody implant has several potential advantages when compared with traditional materials. Having an elastic modulus very similar to bone minimizes the potential for stress shielding, and as the material resorbs additional loading is transferred to the developing fusion mass. Although preclinical and clinical studies have demonstrated the suitability of polylactide implants for lumbar interbody fusion, detailed information on cervical anterior cervical discectomy and fusion (ACDF) with polylactide devices is desirable. Methods. Single level ACDF was performed in 8 skeletally mature ewes. Bioresorbable 70:30 poly (l-lactide-co-d,l-lactide) interbody implants packed with autograft were used with single-level metallic plates. Radiographs were made every 3 months up to 1 year, and yearly thereafter. The animals were killed at 6 months (3 animals), 12 months (3 animals), and 36 months (2 animals). In addition to the serial plain radiographs, the specimens were evaluated by nondestructive biomechanical testing and undecalcified histologic analysis. Results. The bioresorbable polylactide implants were effective in achieving interbody fusion. The 6-month animals appeared fused radiographically and biomechanically, whereas histologic sections demonstrated partial fusion (in 3 of 3 animals). Radiographic fusion was confirmed histologically and biomechanically at 12 months (3 of 3 animals) and 36 months (2 of 2 animals). A mild chronic inflammatory response to the resorbing polylactide implant was observed at both 6 months and 12 months. At 36 months, the operative levels were solidly fused and the implants were completely resorbed. No adverse tissue response was observed in any animal at any time period. Conclusion. Interbody fusion was achieved using bioresorbable polylactide implants, with no evidence of implant collapse, extrusion, or adverse tissue response to the material. The use of polylactide as a cervical interbody device appears both safe and effective based on these ACDF animal model results

    The views of health guideline developers on the use of automation in health evidence synthesis

    Get PDF
    BACKGROUND: The increasingly rapid rate of evidence publication has made it difficult for evidence synthesis-systematic reviews and health guidelines-to be continually kept up to date. One proposed solution for this is the use of automation in health evidence synthesis. Guideline developers are key gatekeepers in the acceptance and use of evidence, and therefore, their opinions on the potential use of automation are crucial. METHODS: The objective of this study was to analyze the attitudes of guideline developers towards the use of automation in health evidence synthesis. The Diffusion of Innovations framework was chosen as an initial analytical framework because it encapsulates some of the core issues which are thought to affect the adoption of new innovations in practice. This well-established theory posits five dimensions which affect the adoption of novel technologies: Relative Advantage, Compatibility, Complexity, Trialability, and Observability. Eighteen interviews were conducted with individuals who were currently working, or had previously worked, in guideline development. After transcription, a multiphase mixed deductive and grounded approach was used to analyze the data. First, transcripts were coded with a deductive approach using Rogers' Diffusion of Innovation as the top-level themes. Second, sub-themes within the framework were identified using a grounded approach. RESULTS: Participants were consistently most concerned with the extent to which an innovation is in line with current values and practices (i.e., Compatibility in the Diffusion of Innovations framework). Participants were also concerned with Relative Advantage and Observability, which were discussed in approximately equal amounts. For the latter, participants expressed a desire for transparency in the methodology of automation software. Participants were noticeably less interested in Complexity and Trialability, which were discussed infrequently. These results were reasonably consistent across all participants. CONCLUSIONS: If machine learning and other automation technologies are to be used more widely and to their full potential in systematic reviews and guideline development, it is crucial to ensure new technologies are in line with current values and practice. It will also be important to maximize the transparency of the methods of these technologies to address the concerns of guideline developers

    PROTECTIVE ANTIBODIES IN THE SERUM OF SYPHILITIC RABBITS

    Full text link

    Attitude Determination from Single-Antenna Carrier-Phase Measurements

    Full text link
    A model of carrier phase measurement (as carried out by a satellite navigation receiver) is formulated based on electromagnetic theory. The model shows that the phase of the open-circuit voltage induced in the receiver antenna with respect to a local oscillator (in the receiver) depends on the relative orientation of the receiving and transmitting antennas. The model shows that using a {\it single} receiving antenna, and making carrier phase measurements to seven satellites, the 3-axis attitude of a user platform (in addition to its position and time) can be computed relative to an initial point. This measurement model can also be used to create high-fidelity satellite signal simulators that take into account the effect of platform rotation as well as translation.Comment: 12 pages, and one figure. Published in J. Appl. Phys. vol. 91, No. 7, April 1, 200

    Genome wide signatures of positive selection: The comparison of independent samples and the identification of regions associated to traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of genome wide analyses of polymorphisms is to achieve a better understanding of the link between genotype and phenotype. Part of that goal is to understand the selective forces that have operated on a population.</p> <p>Results</p> <p>In this study we compared the signals of selection, identified through population divergence in the Bovine HapMap project, to those found in an independent sample of cattle from Australia. Evidence for population differentiation across the genome, as measured by F<sub>ST</sub>, was highly correlated in the two data sets. Nevertheless, 40% of the variance in F<sub>ST </sub>between the two studies was attributed to the differences in breed composition. Seventy six percent of the variance in F<sub>ST </sub>was attributed to differences in SNP composition and density when the same breeds were compared. The difference between F<sub>ST </sub>of adjacent loci increased rapidly with the increase in distance between SNP, reaching an asymptote after 20 kb. Using 129 SNP that have highly divergent F<sub>ST </sub>values in both data sets, we identified 12 regions that had additive effects on the traits residual feed intake, beef yield or intramuscular fatness measured in the Australian sample. Four of these regions had effects on more than one trait. One of these regions includes the <it>R3HDM1 </it>gene, which is under selection in European humans.</p> <p>Conclusion</p> <p>Firstly, many different populations will be necessary for a full description of selective signatures across the genome, not just a small set of highly divergent populations. Secondly, it is necessary to use the same SNP when comparing the signatures of selection from one study to another. Thirdly, useful signatures of selection can be obtained where many of the groups have only minor genetic differences and may not be clearly separated in a principal component analysis. Fourthly, combining analyses of genome wide selection signatures and genome wide associations to traits helps to define the trait under selection or the population group in which the QTL is likely to be segregating. Finally, the F<sub>ST </sub>difference between adjacent loci suggests that 150,000 evenly spaced SNP will be required to study selective signatures in all parts of the bovine genome.</p
    • 

    corecore