802 research outputs found
A video analysis of head injuries satisfying the criteria for a head injury assessment in professional Rugby Union: a prospective cohort study
Objectives
Concussion is the most common match
injury in professional Rugby Union, accounting for 25%
of match injuries. The primary prevention of head injuries
requires that the injury mechanism be known so that
interventions can be targeted to specifically overall
incidence by focusing on characteristics with the greatest
propensity to cause a head injury.
Methods
611 head injury assessment (HIA) events
in professional Rugby Union over a 3-year period were
analysed, with specific reference to match events,
position, time and nature of head contact.
Results
464 (76%) of HIA events occur during
tackles, with the tackler experiencing a significantly
greater propensity for an HIA than the ball carrier (1.40
HIAs/1000 tackles for the tackler vs 0.54 HIAs/1000
tackles for the ball carrier, incidence rate ratio (IRR)
2.59). Propensity was significantly greater for backline
players than forwards (IRR 1.54, 95%CI 1.28 to 1.84),
but did not increase over the course of the match. Head
to head contact accounted for the most tackler HIAs,
with the greatest propensity.
Conclusions
By virtue of its high propensity
and frequency, the tackle should be the focus for
interventions that may include law change and technique
education. A specific investigation of the characteristics
of the tackle is warranted to refine the approach to
preventative strategies
Micro-Hall Magnetometry Studies of Thermally Assisted and Pure Quantum Tunneling in Single Molecule Magnet Mn12-Acetate
We have studied the crossover between thermally assisted and pure quantum
tunneling in single crystals of high spin (S=10) uniaxial single molecule
magnet Mn12-acetate using micro-Hall effect magnetometry. Magnetic hysteresis
experiments have been used toinvestigate the energy levels that determine the
magnetization reversal as a function of magnetic field and temperature. These
experiments demonstrate that the crossover occurs in a narrow (~0.1 K) or broad
(~1 K) temperature interval depending on the magnitude and direction of the
applied field. For low external fields applied parallel to the easy axis, the
energy levels that dominate the tunneling shift abruptly with temperature. In
the presence of a transverse field and/or large longitudinal field these energy
levels change with temperature more gradually. A comparison of our experimental
results with model calculations of this crossover suggest that there are
additional mechanisms that enhance the tunneling rate of low lying energy
levels and broaden the crossover for small transverse fields.Comment: 5 pages, 5 figure
Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'
The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved
The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to
measure the gravity-wave signature of primordial inflation through its
distinctive imprint on the linear polarization of the cosmic microwave
background. The instrument consists of a polarizing Michelson interferometer
configured as a nulling polarimeter to measure the difference spectrum between
orthogonal linear polarizations from two co-aligned beams. Either input can
view the sky or a temperature-controlled absolute reference blackbody
calibrator. PIXIE will map the absolute intensity and linear polarization
(Stokes I, Q, and U parameters) over the full sky in 400 spectral channels
spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um
wavelength). Multi-moded optics provide background-limited sensitivity using
only 4 detectors, while the highly symmetric design and multiple signal
modulations provide robust rejection of potential systematic errors. The
principal science goal is the detection and characterization of linear
polarization from an inflationary epoch in the early universe, with
tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE
data set will also constrain physical processes ranging from Big Bang cosmology
to the nature of the first stars to physical conditions within the interstellar
medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology
and Astroparticle Physic
The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region
Variable-range hopping in quasi-one-dimensional electron crystals
We study the effect of impurities on the ground state and the low-temperature
dc transport in a 1D chain and quasi-1D systems of many parallel chains. We
assume that strong interactions impose a short-range periodicicity of the
electron positions. The long-range order of such an electron crystal (or
equivalently, a charge-density wave) is destroyed by impurities. The 3D
array of chains behaves differently at large and at small impurity
concentrations . At large , impurities divide the chains into metallic
rods. The low-temperature conductivity is due to the variable-range hopping of
electrons between the rods. It obeys the Efros-Shklovskii (ES) law and
increases exponentially as decreases. When is small, the metallic-rod
picture of the ground state survives only in the form of rare clusters of
atypically short rods. They are the source of low-energy charge excitations. In
the bulk the charge excitations are gapped and the electron crystal is pinned
collectively. A strongly anisotropic screening of the Coulomb potential
produces an unconventional linear in energy Coulomb gap and a new law of the
variable-range hopping . remains
constant over a finite range of impurity concentrations. At smaller the
2/5-law is replaced by the Mott law, where the conductivity gets suppressed as
goes down. Thus, the overall dependence of on is nonmonotonic.
In 1D, the granular-rod picture and the ES apply at all . The conductivity
decreases exponentially with . Our theory provides a qualitative explanation
for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For
the full abstract, see the manuscript (v2) several changes in presentation
per referee's comments. No change in result
Early above- and below-ground responses of subboreal conifer seedlings to various levels of deciduous canopy removal
We examined the growth of understory conifers, following partial or complete deciduous canopy removal, in a field study established in two regions in Canada. In central British Columbia, we studied the responses of three species (Pseudotsuga menziesii var. glauca (Beissn.) Franco, Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm., and Abies lasiocarpa (Hook.) Nutt.), and in northwestern Quebec, we studied one species (Abies balsamea (L.) Mill.). Stem and root diameter and height growth were measured 5 years before and 3 years after harvesting. Both root and stem diameter growth increased sharply following release but seedlings showed greater root growth, suggesting that in the short term, improvement in soil resource capture and transport, and presumably stability, may be more important than an increase in stem diameter and height growth. Response was strongly size dependent, which appears to reflect greater demand for soil resources as well as higher light levels and greater tree vigour before release for taller individuals. Growth ratios could not explain the faster response generally attributed to true fir species or the unusual swift response of spruces. Good prerelease vigour of spruces, presumably favoured by deciduous canopies, could explain their rapid response to release
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
- …