10 research outputs found

    Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome

    Get PDF
    BACKGROUND: Pyrexia after stroke (temperature ≄37.5°C) is associated with poor prognosis, but information on timing of body temperature changes and relationship to stroke severity and subtypes varies. METHODS: We recruited patients with acute ischemic stroke, measured stroke severity, stroke subtype and recorded four-hourly tympanic (body) temperature readings from admission to 120 hours after stroke. We sought causes of pyrexia and measured functional outcome at 90 days. We systematically summarised all relevant previous studies. RESULTS: Amongst 44 patients (21 males, mean age 72 years SD 11) with median National Institute of Health Stroke Score (NIHSS) 7 (range 0–28), 14 had total anterior circulation strokes (TACS). On admission all patients, both TACS and non-TACS, were normothermic (median 36.3°C vs 36.5°C, p=0.382 respectively) at median 4 hours (interquartile range, IQR, 2–8) after stroke; admission temperature and NIHSS were not associated (r(2)=0.0, p=0.353). Peak temperature, occurring at 35.5 (IQR 19.0 to 53.8) hours after stroke, was higher in TACS (37.7°C) than non-TACS (37.1°C, p<0.001) and was associated with admission NIHSS (r(2)=0.20, p=0.002). Poor outcome (modified Rankin Scale ≄3) at 90 days was associated with higher admission (36.6°C vs. 36.2°C p=0.031) and peak (37.4°C vs. 37.0°C, p=0.016) temperatures. Sixteen (36%) patients became pyrexial, in seven (44%) of whom we found no cause other than the stroke. CONCLUSIONS: Normothermia is usual within the first 4 hours of stroke. Peak temperature occurs at 1.5 to 2 days after stroke, and is related to stroke severity/subtype and more closely associated with poor outcome than admission temperature. Temperature-outcome associations after stroke are complex, but normothermia on admission should not preclude randomisation of patients into trials of therapeutic hypothermia

    Focal embolic cerebral ischemia in the rat

    No full text
    Animal models of focal cerebral ischemia are well accepted for investigating the pathogenesis and potential treatment strategies for human stroke. Occlusion of the middle cerebral artery (MCA) with an endovascular filament is a widely used model to induce focal cerebral ischemia. However, this model is not amenable to thrombolytic therapies. As thrombolysis with recombinant tissue plasminogen activator (rtPA) is a standard of care within 4.5 hours of human stroke onset, suitable animal models that mimic cellular and molecular mechanisms of thrombosis and thrombolysis of stroke are required. By occluding the MCA with a fibrin-rich allogeneic clot, we have developed an embolic model of MCA occlusion in the rat, which recapitulates the key components of thrombotic development and of thrombolytic therapy of rtPA observed from human ischemic stroke. The surgical procedures of our model can be typically completed within approximately 30 min and are highly adaptable to other strains of rats as well as mice for both genders. Thus, this model provides a powerful tool for translational stroke research

    Biomarkers of Neurological Disorders

    No full text
    corecore