5 research outputs found

    Particle control in long-pulse discharge using divertor pumping in LHD

    Get PDF
    Density control is crucial for maintaining stable confined plasma. Divertor pumping, where neutral particles are compressed and exhausted in the divertor region, was developed for this task for the Large Helical Device. In this study, neutral particle pressure, which is related to recycling, was systematically scanned in the magnetic configuration by changing the magnetic axis position. High neutral particle pressure and compression were obtained in the divertor for a high plasma electron density and the inner magnetic axis configuration. Density control using divertor pumping with gas puffing was applied to electron cyclotron heated plasma in the inner magnetic axis configuration, which provides high neutral particle compression and exhaust in the divertor. Stable plasma density and electron temperature were maintained with divertor pumping. A heat analysis shows that divertor pumping did not affect edge electron heat conductivity, but it led to low electron heat conductivity in the core caused by electron-internal-transport-barrier-like formation

    Application of Divertor Pumping to Long-Pulse Discharge for Particle Control in LHD

    Get PDF
    Divertor pumping was applied to plasma discharges for superior fuel particle control in the Large Helical Device (LHD). The LHD is equipped with two different pumping systems. One is the main pumping system, in which the pumping speed is 260 m3/s in hydrogen. The other pumping system is the divertor pumping system in which the pumping speed is 70 m3/s in hydrogen. Divertor pumping was applied to 40-second long pulse Electron Cyclotron Heating (ECH) discharges to assess the improvement in particle control provided by divertor pumping. The results show that without divertor pumping, the electron density was not controlled by gas puffing using the feedback signal of line-averaged electron density. Then, the plasma confinement deteriorated, finally leading to radiation collapse. On the other hand, with divertor pumping, the density was well-controlled by gas puffing using the feedback signal. The results indicate that divertor pumping is one of the key tools for controlling the particles in fusion plasmas
    corecore