883 research outputs found
Trophy hunting certification
Adaptive certification is the best remaining option for the trophy hunting industry in Africa to demonstrate sustainable and ethical hunting practices that benefit local communities and wildlife conservation
Food web persistence in fragmented landscapes
Habitat destruction, characterized by patch loss and fragmentation, is a key driver of biodiversity loss. There has been some progress in the theory of spatial food webs; however, to date, practically nothing is known about how patch configurational fragmentation influences multi-trophic food web dynamics. We develop a spatially extended patch-dynamic model for different food webs by linking patch connectivity with trophic-dependent dispersal (i.e. higher trophic levels displaying longer-range dispersal). Using this model, we find that species display different sensitivities to patch loss and fragmentation, depending on their trophic position and the overall food web structure. Relative to other food webs, omnivory structure significantly increases system robustness to habitat destruction, as feeding on different trophic levels increases the omnivore’s persistence. Additionally, in food webs with a dispersal–competition trade-off between species, intermediate levels of habitat destruction can enhance biodiversity by creating refuges for the weaker competitor. This demonstrates that maximizing patch connectivity is not always effective for biodiversity maintenance, as in food webs containing indirect competition, doing so may lead to further species loss
Semi-natural habitats support biological control, pollination and soil conservation in Europe:A review
Semi-natural habitats are integral to most agricultural areas and have the potential to support ecosystem services, especially biological control and pollination by supplying resources for the invertebrates providing these services and for soil conservation by preventing erosion and run-off. Some habitats are supported through agri-environment scheme funding in the European Union, but their value for ecosystem service delivery has been questioned. An improved understanding of previous research approaches and outcomes will contribute to the development of more sustainable farming systems, improve experimental designs and highlight knowledge gaps especially for funders and researchers. Here we compiled a systematic map to allow for the first time a review of the quantity of evidence collected in Europe that semi-natural habitats support biological control, pollination and soil conservation. A literature search selected 2252 publications, and, following review, 270 met the inclusion criteria and were entered into the database. Most publications were of pest control (143 publications) with less on pollination (78 publications) or soil-related aspects (31). For pest control and pollination, most publications reported a positive effect of semi-natural habitats. There were weaknesses in the evidence base though because of bias in study location and the crops, whilst metrics (e.g. yield) valued by end users were seldom measured. Hedgerows, woodland and grassland were the most heavily investigated semi-natural habitats, and the wider landscape composition was often considered. Study designs varied considerably yet only 24% included controls or involved manipulation of semi-natural habitats. Service providers were commonly measured and used as a surrogate for ecosystem service delivery. Key messages for policymakers and funders are that they should encourage research that includes more metrics required by end users, be prepared to fund longer-term studies (61% were of only 1-year duration) and investigate the role of soils within semi-natural habitats in delivering ecosystem services
Pollination and biological control research: are we neglecting two billion smallholders
Food insecurity is a major world problem, with ca. 870 million people in the world being chronically undernourished. Most of these people live in tropical, developing regions and rely on smallholder farming for food security. Solving the problem of food insecurity is thought to depend, in part, on managing ecosystem services, such as the pollination of crops and the biological control of crop pests, to enhance or maintain food production. Our knowledge regarding regulating ecosystem services in smallholder-farmed (or dualistic) landscapes is limited and whilst pollination has been the focus of considerable research, the provision of natural enemy services, important for every crop worldwide, has been relatively neglected. In order to assess whether ecosystem-service research adequately represents smallholder-farmed landscapes, whilst also considering climatic region and national economic status, we examined the constituent studies of recent quantitative reviews relevant to biological control and pollination. No regulating ecosystem service meta-analysis, to our knowledge, has focussed on smallholder agriculture despite its importance to billions of peoples’ local food security. We found that whilst smallholdings contributed 16% of global farmland area and 83% of the global agricultural population (estimated using FAO’s World Census of Agriculture 2000) only 22 of 190 studies (12%), overall, came from smallholder-farmed landscapes. These smallholder studies mostly concerned coffee production (16 studies). Individual reviews of biological control were significantly and strongly biased towards data from large-scale farming in temperate regions. In contrast pollination reviews included more smallholder studies and were more balanced for climate regions. The high diversity of smallholder-farmed landscapes implies that more research will be needed to understand them compared to large-scale landscapes but we found far more research from the latter. We highlight that these skews in research effort have implications for sustainable intensification and the food security of billions in the developing world. In particular we urge for balance in future ecosystem-services research and synthesis by greater consideration of a diverse range of smallholder-farmed landscapes in Africa and continental Asia
Recommended from our members
The influence of landscape composition and configuration on crop yield resilience
1. Sustainable agriculture aims to produce sufficient food while minimizing environmental damage. To achieve this, we need to understand the role of agricultural landscapes in providing diverse ecosystem services and how these affect crop production and resilience, that is, maintaining yields despite environmental perturbation.
We used 10 years of English wheat yield data to derive three metrics of resilience (relative yield across the time series, yield stability around a moving average and resistance to an extreme weather event) at 10 km × 10 km resolution. We used remotely sensed maps to calculate measures of landscape structure, including composition (proportions of different land cover types) and configuration (metrics of connectivity and proximity), known to affect ecosystem service delivery (e.g. control of pests by beneficial invertebrates). We then used an information‐theoretic approach to identify the best‐fitting combination of landscape structure predictors for each resilience metric, using a potential yield model to account for the effects of climate and soils.
Relative yield showed a strongly positive relationship with the area of arable land. For yield stability, this relationship was evident but alongside other landscape structure variables in the best‐fitting model. No relationship with arable land was evident for resistance.
Yield stability showed a strongly positive effect of proximity to semi‐natural habitats. For resistance, the best‐fitting model included positive relationships with the cover of semi‐natural habitats and proximity to semi‐natural grasslands.
Synthesis and applications. Landscapes with the highest relative wheat yields did not show the highest yield stability or resistance to extreme events. As resilience metrics were derived from shorter portions of the time series, the importance of semi‐natural habitats compared to arable land increased. This is probably driven by the complex interplay between landscape structure, agricultural management and ecosystem services. These results demonstrate that measuring relative yield over time may be insufficient to capture the full effect that non‐arable components of the landscape, and the ecosystem services they deliver, have on other aspects of resilience, and that there are clear trade‐offs in managing agricultural landscapes to maximize different aspects of crop yield resilience
Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation?
The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry) can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation) ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order
A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies
International audienceBackground: Space-for-time substitution—that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations—is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes.Hypothesis: ere, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration.Methods: sing land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time.Results: For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched.Significance: The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity
- …