19 research outputs found

    The Effects of Age, Exposure History and Malaria Infection on the Susceptibility of Anopheles Mosquitoes to Low Concentrations of Pyrethroid

    Get PDF
    Chemical insecticides are critical components of malaria control programs. Their ability to eliminate huge numbers of mosquitoes allows them to swiftly interrupt disease transmission, but that lethality also imposes immense selection for insecticide resistance. Targeting control at the small portion of the mosquito population actually responsible for transmitting malaria parasites to humans would reduce selection for resistance, yet maintain effective malaria control. Here, we ask whether simply lowering the concentration of the active ingredient in insecticide formulations could preferentially kill mosquitoes infected with malaria and/or those that are potentially infectious, namely, old mosquitoes. Using modified WHO resistance-monitoring assays, we exposed uninfected Anopheles stephensi females to low concentrations of the pyrethroid permethrin at days 4, 8, 12, and 16 days post-emergence and monitored survival for at least 30 days to evaluate the immediate and long-term effects of repeated exposure as mosquitoes aged. We also exposed Plasmodium chabaudi- and P. yoelii-infected An. stephensi females. Permethrin exposure did not consistently increase mosquito susceptibility to subsequent insecticide exposure, though older mosquitoes were more susceptible. A blood meal slightly improved survival after insecticide exposure; malaria infection did not detectably increase insecticide susceptibility. Exposure to low concentrations over successive feeding cycles substantially altered cohort age-structure. Our data suggest the possibility that, where high insecticide coverage can be achieved, low concentration formulations have the capacity to reduce disease transmission without the massive selection for resistance imposed by current practice

    The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x

    Get PDF
    Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria

    Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast

    Get PDF
    Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones. © 2011 Bell et al

    Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program

    Get PDF
    BACKGROUND: Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1(R)) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R) mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention

    Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    Get PDF
    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins

    Hydrogel-based delivery of Tat-fused protein Hsp70 protects dopaminergic cells in vitro and in a mouse model of Parkinson\u2019s disease

    No full text
    Neurodegenerative disorders such as Parkinson\u2019s disease (PD) have no effective therapies. However, many promising drugs are precluded from clinical trials because of their poor brain availability. The chaperone protein Hsp70 has been reported to be effective in PD models, but its brain targeting is challenging. We developed a novel brain Hsp70 delivery system using injectable, biocompatible, and biodegradable semi-interpenetrating polymer networks of collagen (COLL) and low-molecular-weight hyaluronic acid (LMW HA) structured with gelatin particles. We produced human recombinant Hsp70-1A fused with the cell-penetrating peptide Tat (Tat-Hsp70) that was neuroprotective in vitro against the dopaminergic toxin 6-hydroxydopamine (6-OHDA). We assessed Tat-Hsp70 release from the selected COLL-LMW HA composites in vitro, observing a 95% release of loaded protein after 96 h. The release kinetics FITTED the Korsmeyer-Peppas model (regression coefficient 0.98) and the released Tat-Hsp70 remained neuroprotective for SH-SY5Y cells. Magnetic resonance imaging revealed that COLL-LMW HA composites lasted at least 96 h at the brain level, and in vivo Tat-Hsp70 release studies indicated that hydrogel presence is pivotal for a spatially focused neuroprotective effect. In an in vivo model of dopaminergic degeneration, Tat-Hsp70-loaded composites conveyed neuroprotection at both the behavioral and dopaminergic neuronal levels against the striatal injection of 6-OHDA. After the injection of Tat-Hsp70-loaded composites, mice showed a transient inflammatory response, with a decrease in GFAP and CD11b immunostaining after 7 days. Our delivery system enabled the effective brain release of Tat-Hsp70 and is ready for further improvements

    The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector <it>Anopheles arabiensis</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles arabiensis</it> is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared <it>An</it>. <it>arabiensis</it>.</p> <p>Methods</p> <p>Larvae drawn from an insecticide susceptible <it>An</it>. <it>arabiensis</it> strain (SENN) as well as a DDT-resistant strain (SENN-DDT) were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length), knock-down resistance (<it>kdr</it>) status and levels of detoxification enzyme activity.</p> <p>Results and conclusion</p> <p><it>Anopheles arabiensis</it> larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN) or resistant (SENN-DDT) adults. This is important in those instances where cereal farming is associated with increased <it>An</it>. <it>arabiensis</it> transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also prove to be more efficient malaria vectors. In general, larval nutrient deprivation in <it>An</it>. <it>arabiensis</it> has important implications for subsequent adults in terms of their size and relative insecticide susceptibility, which may in turn impact on their malaria vector capacity in areas where insecticide based control measures are in place.</p

    Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin

    Get PDF
    BACKGROUND: The use of insecticides to control malaria vectors is essential to reduce the prevalence of malaria and as a result, the development of insecticide resistance in vector populations is of major concern. Anopheles arabiensis is one of the main African malaria vectors and insecticide resistance in this species has been reported in a number of countries. The aim of this study was to investigate the detoxification enzymes that are involved in An. arabiensis resistance to DDT and pyrethroids. METHODS: The detoxification enzyme profiles were compared between two DDT selected, insecticide resistant strains of An. arabiensis, one from South Africa and one from Sudan, using the An. gambiae detoxification chip, a boutique microarray based on the major classes of enzymes associated with metabolism and detoxification of insecticides. Synergist assays were performed in order to clarify the roles of over-transcribed detoxification genes in the observed resistance phenotypes. In addition, the presence of kdr mutations in the colonies under investigation was determined. RESULTS: The microarray data identifies several genes over-transcribed in the insecticide selected South African strain, while in the Sudanese population, only one gene, CYP9L1, was found to be over-transcribed. The outcome of the synergist experiments indicate that the over-transcription of detoxification enzymes is linked to deltamethrin resistance, while DDT and permethrin resistance are mainly associated with the presence of the L1014F kdr mutation. CONCLUSIONS: These data emphasise the complexity associated with resistance phenotypes and suggest that specific insecticide resistance mechanisms cannot be extrapolated to different vector populations of the same species
    corecore