6 research outputs found

    Measuring spin diffusion of electrons in bulk n-GaAs using circularly dichromatic absorption difference spectroscopy of spin gratings

    No full text
    Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of D-s=201 +/- 25 cm(2)/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (D-c), which is much different from the case in GaAs quantum wells where D-s is markedly less than D-c

    An internally-matched GaN HEMTs device with 45.2 W at 8 GHz for X-band application

    No full text
    Optimized AlGaN/AlN/GaN high electron mobility transistor (HEMT) with high mobility GaN channel layer structures were grown on 2-in. diameter semi-insulating 6H-SiC substrates by MOCVD. The 2-in. diameter GaN HEMT wafer exhibited a low average sheet resistance of 261.9 Omega/square, with the resistance un-uniformity as low as 2.23%. Atomic force microscopy measurements revealed a smooth AlGaN surface whose root-mean-square roughness is 0.281 nm for a scan area of 5 x 5 mu m. For the single-cell HEMTs device of 2.5-mm gate width fabricated using the materials, a maximum drain current density of 1.31 A/mm, an extrinsic transconductance of 450 mS/mm, a current gain cutoff frequency of 24 GHz and a maximum frequency of oscillation 54 GHz were achieved. The four-cell internally-matched GaN HEMTs device with 10-mm total gate width demonstrated a very high output power of 45.2 W at 8 GHz under the condition of continuous-wave (CW), with a power added efficiency of 32.0% and power gain of 6.2 dB. To our best knowledge, the achieved output power of internally-matched devices are the state-of-the-art result ever reported for X-band GaN-based HEMTs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved

    Age structure changes and extraordinary lifespan in wild medfly populations

    No full text
    The main purpose of this study was to test the hypotheses that major changes in age structure occur in wild populations of the Mediterranean fruit fly (medfly) and that a substantial fraction of individuals survive to middle age and beyond (> 3-4 weeks). We thus brought reference life tables and deconvolution models to bear on medfly mortality data gathered from a 3-year study of field-captured individuals that were monitored in the laboratory. The average time-to-death of captured females differed between sampling dates by 23.9, 22.7, and 37.0 days in the 2003, 2004, and 2005 field seasons, respectively. These shifts in average times-to-death provided evidence of changes in population age structure. Estimates indicated that middle-aged medflies (> 30 days) were common in the population. A surprise in the study was the extraordinary longevity observed in field-captured medflies. For example, 19 captured females but no reference females survived in the laboratory for 140 days or more, and 6 captured but no reference males survived in the laboratory for 170 days or more. This paper advances the study of aging in the wild by introducing a new method for estimating age structure in insect populations, demonstrating that major changes in age structure occur in field populations of insects, showing that middle-aged individuals are common in the wild, and revealing the extraordinary lifespans of wild-caught individuals due to their early life experience in the field. © 2008 The Authors Journal compilation © 2008 Blackwell Publishing Ltd/The Anatomical Society of Great Britain and Ireland

    Estimation of the Mortalities of the Immature Stages and Adults

    No full text
    corecore