244 research outputs found

    Designing an efficient hybrid optical cavity

    Get PDF
    We present an efficient terahertz (THz) detector based on an optically thin hybrid cavity. We use experimental and numerical methods to design efficient detectors, finding a hybrid cavity structure with a photoconductive (PC) layer as thin as 50 nm which absorbs almost 80% of light at the operation wavelength. These optically thin detectors are well suited to near-field microscopy and terahertz component integration

    Nano-FTIR Spectroscopy of Intersubband Polaritons in Single Nanoantenna

    Get PDF
    We demonstrate observation of infrared (IR) intersubband (ISB) polaritons in an isolated subwavelength size nanoantenna using near-field Fourier-transform infrared (FTIR) spectroscopy of the evanescent fields on the nanoantenna surface. The near-field approach enables detection of the distinctive polariton splitting of the nanoantenna resonance in the amplitude and phase spectra, as well as mapping of the ISB polariton dispersion. The nano-FTIR spectroscopy approach opens doors for investigations of light-matter interaction in the single subwavelength nanoantenna regime

    Terahertz detectors based on all-dielectric photoconductive metasurfaces

    Get PDF
    Performance of terahertz (THz) photoconductive devices, including detectors and emitters, has been improved recently by means of plasmonic nanoantennae and gratings. However, plasmonic nanostructures introduce Ohmic losses, which limit gains in device performance. In this presentation, we discuss an alternative approach, which eliminates the problem of Ohmic losses. We use all-dielectric photoconductive metasurfaces as the active region in THz switches to improve their efficiency. In particular, we discuss two approaches to realize perfect optical absorption in a thin photoconductive layer without introducing metallic elements. In addition to providing perfect optical absorption, the photoconductive channel based on all-dielectric metasurface allows us to engineer desired electrical properties, specifically, fast and efficient conductivity switching with very high contrast. This approach thus promises a new generation of sensitive and efficient THz photoconductive detectors. Here we demonstrate and discuss performance of two practical THz photoconductive detectors with integrated all-dielectric metasurfaces

    Near-field probing of strong light-matter coupling in single IR antennae

    Get PDF
    Quantum well intersubband polaritons are traditionally studied in large scale systems, over many wavelengths in size. In this presentation, we demonstrate that it is possible to detect and investigate intersubband polaritons in a single subwavelength nanoantenna in the IR frequency range. We observe polariton formation using a scattering-type near-field microscope and nano-FTIR spectroscopy. We will discuss near-field spectroscopic signatures of plasmonic antennae with and without coupling to the intersubband transition in quantum wells located underneath the antenna. Evanescent field amplitude spectra recorded on the antenna surface show a mode anti-crossing behavior in the strong coupling case. We also observe a corresponding strong-coupling signature in the phase of the detected field. We anticipate that this near-field approach will enable explorations of strong and ultrastrong light-matter coupling in the single nanoantenna regime, including investigations of the elusive effect of ISB polariton condensation

    Efficient Terahertz Detection with Perfectly-Absorbing Metasurface

    Get PDF
    We demonstrate a unique photoconductive design for terahertz (THz) detection based on a perfectly absorbing, all-dielectric metasurface. Our design exploits Mie resonances in electrically connected cubic resonators fabricated in low-temperature grown (LT) GaAs. Experimentally, the detector achieves very high contrast between ON/OFF conductivity states (107) whilst also requiring extremely low optical power for optimal operation (100 muW). We find that the Mie resonances dissipate sufficiently fast and maintain the detection bandwidth up to 3 THz

    Perfect absorption in GaAs metasurfaces near the bandgap edge

    Get PDF
    Perfect optical absorption occurs in a metasurface that supports two degenerate and critically-coupled modes of opposite symmetry. The challenge in designing a perfectly absorbing metasurface for a desired wavelength and material stems from the fact that satisfying these conditions requires multi-dimensional optimization often with parameters affecting optical resonances in non-trivial ways. This problem comes to the fore in semiconductor metasurfaces operating near the bandgap wavelength, where intrinsic material absorption varies significantly. Here we devise and demonstrate a systematic process by which one can achieve perfect absorption in GaAs metasurfaces for a desired wavelength at different levels of intrinsic material absorption, eliminating the need for trial and error in the design process. Using this method, we show that perfect absorption can be achieved not only at wavelengths where GaAs exhibits high absorption, but also at wavelengths near the bandgap edge. In this region, absorption is enhanced by over one order of magnitude compared a layer of unstructured GaAs of the same thickness

    Sensitivity and Noise in THz Photoconductive Metasurface Detectors

    Get PDF
    Photoconductive antenna THz detectors based on highly absorbing LT-GaAs metasurfaces enable high sensitivity and high signal-to-noise ratio (> 106) at optical gate powers as low as 5 μW. By investigating the dependence of detector performance on optical gate power, we compare several metasurface detectors with standard PCAs and develop a general model for quantifying the sensitivity and optimal gate power for detector operation. We also show that the LT-GaAs metasurface can even enhance sub bandgap absorption, enabling the use of these detectors in telecom wavelength systems

    Perfectly-absorbing photoconductive metasurfaces for THz applications

    Get PDF
    Ultrafast switching of photoconductivity is essential for many terahertz (THz) technologies, however this process is inefficient. Recently developed concepts of all-dielectric metasurfaces can improve efficiency of ultrafast switches, overcoming material limitations, reducing the thickness of the photoconductive region and lowering optical power requirements for THz devices. We will consider two types of perfectly absorbing metasurfaces compatible with the photoconductive switch architecture and discuss performance of THz detectors with integrated metasurfaces. We will show that optical power level required for optimum operation for these THz detectors is more than one order of magnitude lower in comparison to devices without metasurfaces

    Nonlinear Terahertz Generation in Semiconductor Metasurfaces

    Get PDF
    We demonstrate ultra-thin semiconductor metasurfaces for generation of THz pulses. By investigating the dependence of the THz amplitude and phase on excitation field polarization and crystal orientation, we deduce that the underlying THz emission mechanism in metasurfaces differs from bulk semiconductor wafers with second order nonlinearity playing a dominant role. The metasurface enables control of the THz phase and can therefore be used to spatially structure the THz emitted field. We use this effect to design and demonstrate a metasurface which simultaneously emits and focusses THz pulses

    General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    Get PDF
    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devicesopen
    corecore