5 research outputs found
Application of amino acid occurrence for discriminating different folding types of globular proteins
<p>Abstract</p> <p>Background</p> <p>Predicting the three-dimensional structure of a protein from its amino acid sequence is a long-standing goal in computational/molecular biology. The discrimination of different structural classes and folding types are intermediate steps in protein structure prediction.</p> <p>Results</p> <p>In this work, we have proposed a method based on linear discriminant analysis (LDA) for discriminating 30 different folding types of globular proteins using amino acid occurrence. Our method was tested with a non-redundant set of 1612 proteins and it discriminated them with the accuracy of 38%, which is comparable to or better than other methods in the literature. A web server has been developed for discriminating the folding type of a query protein from its amino acid sequence and it is available at http://granular.com/PROLDA/.</p> <p>Conclusion</p> <p>Amino acid occurrence has been successfully used to discriminate different folding types of globular proteins. The discrimination accuracy obtained with amino acid occurrence is better than that obtained with amino acid composition and/or amino acid properties. In addition, the method is very fast to obtain the results.</p
The Proteomic Code: a molecular recognition code for proteins
<p>Abstract</p> <p>Background</p> <p>The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code.</p> <p>Review</p> <p>The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding.</p> <p>Methods and conclusions</p> <p>A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.</p