6 research outputs found

    Auditory dysfunction in type 2 Stickler Syndrome.

    Get PDF
    PURPOSE: To present the extent and site of lesion of auditory dysfunction in a large cohort of individuals with type 2 Stickler Syndrome. Type 2 Stickler Syndrome results from a mutation in the gene coding for α-1 type XI pro-collagen, which has been identified in the human vitreous, cartilage and the cochlea of the mouse. The condition is characterised by classic ocular abnormalities, auditory dysfunction, osteoarthropathy and oro-facial dysplasia. METHODS: This is a population study which used a combination of audiometric, tympanometric, and self-report measures on a series of 65 individuals (mean age 29.2 years, range 3-70, female 63.1%) with genetically confirmed type 2 Stickler Syndrome. RESULTS: Hearing impairment was identified in at least one ear for 69% of individuals. Analysis against age-matched normative data showed that reduced hearing sensitivity was present across all test frequencies. Sensorineural hearing loss was most common (77% of ears), with conductive (3%), mixed (7%) and no hearing loss (13%), respectively. The proportion of hypermobile tympanic membranes (24%) was less than previously documented in type 1 Stickler Syndrome. When present, this appears to arise as a direct result of collagen abnormalities in the middle ear. Self-report measures of speech and spatial hearing in sound were comparable to a non-syndromic cohort with similar audiometric thresholds. CONCLUSIONS: Auditory impairment in type 2 Stickler Syndrome is predominantly associated with cochlear hearing loss of varying severities across affected individuals. The impact on hearing thresholds can be seen across the frequency range, suggesting a contribution of defective collagen throughout the cochlea. Self-report questionnaires showed that difficulties understanding speech, and spatial information in sound (such as that used for localisation), were worse than a young, normal-hearing population but comparable to a non-syndromic cohort with similar audiometric thresholds. Therefore, it is likely that hearing loss in type 2 Stickler Syndrome arises in the auditory periphery, without significant central processing deficits

    A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis

    No full text
    It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules
    corecore