6 research outputs found
Contusive spinal cord injury evokes localized changes in NADPH-d activity but extensive changes in Fos-like immunoreactivity in the rat
The histological detection of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), a marker for nitric oxide-producing cells, was used to evaluate ongoing changes in the neural biochemistry of the rat spinal cord 1 week following contusive spinal cord injury (SCI). In addition, the immunohistochemical detection of the immediate-early gene c-fos was used to identify basal patterns of neural activity at this time. The numbers and laminar locations of NADPH-d- and c-fos-positive cells were examined in spinal segments adjacent to the site of injury (T12–S3) as well as those distant from the injury (C3–C5) in both SCI and un-injured rats. Our data show that contusive SCI results in a significant reduction in NADPH-d labelling in the superficial dorsal horn, and a significant increase in NADPH-d expression in small bipolar neurons and large motoneurons in the ventral horn at the site of the injury. In spinal segments distant to the injury site (C3–C5), NADPH-d activity did not differ from that of uninjured controls. Furthermore, significant reductions in the levels of c-fos expression were observed in SCI rats, in spinal segments both at and distant to the site of injury for all spinal laminae. The only exception was a dramatic increase observed in the sacral parasympathetic nucleus. These data suggest that increased NADPH-d expression is related to conditions specific to the site of injury, whereas the changes in c-fos expression probably indicate more global changes in neuronal activity following SCI