990 research outputs found

    Subband Engineering Even-Denominator Quantum Hall States

    Full text link
    Proposed even-denominator fractional quantum Hall effect (FQHE) states suggest the possibility of excitations with non-Abelian braid statistics. Recent experiments on wide square quantum wells observe even-denominator FQHE even under electrostatic tilt. We theoretically analyze these structures and develop a procedure to accurately test proposed quantum Hall wavefunctions. We find that tilted wells favor partial subband polarization to yield Abelian even-denominator states. Our results show that tilting quantum wells effectively engineers different interaction potentials allowing exploration of a wide variety of even-denominator states

    Ramping fermions in optical lattices across a Feshbach resonance

    Full text link
    We study the properties of ultracold Fermi gases in a three-dimensional optical lattice when crossing a Feshbach resonance. By using a zero-temperature formalism, we show that three-body processes are enhanced in a lattice system in comparison to the continuum case. This poses one possible explanation for the short molecule lifetimes found when decreasing the magnetic field across a Feshbach resonance. Effects of finite temperatures on the molecule formation rates are also discussed by computing the fraction of double-occupied sites. Our results show that current experiments are performed at temperatures considerably higher than expected: lower temperatures are required for fermionic systems to be used to simulate quantum Hamiltonians. In addition, by relating the double occupancy of the lattice to the temperature, we provide a means for thermometry in fermionic lattice systems, previously not accessible experimentally. The effects of ramping a filled lowest band across a Feshbach resonance when increasing the magnetic field are also discussed: fermions are lifted into higher bands due to entanglement of Bloch states, in good agreement with recent experiments.Comment: 9 pages, 7 figure

    Interacting classical dimers on the square lattice

    Full text link
    We study a model of close-packed dimers on the square lattice with a nearest neighbor interaction between parallel dimers. This model corresponds to the classical limit of quantum dimer models [D.S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett.{\bf 61}, 2376 (1988)]. By means of Monte Carlo and Transfer Matrix calculations, we show that this system undergoes a Kosterlitz-Thouless transition separating a low temperature ordered phase where dimers are aligned in columns from a high temperature critical phase with continuously varying exponents. This is understood by constructing the corresponding Coulomb gas, whose coupling constant is computed numerically. We also discuss doped models and implications on the finite-temperature phase diagram of quantum dimer models.Comment: 4 pages, 4 figures; v2 : Added results on doped models; published versio

    Mott Domains of Bosons Confined on Optical Lattices

    Get PDF
    In the absence of a confining potential, the boson Hubbard model in its ground state is known to exhibit a superfluid to Mott insulator quantum phase transition at commensurate fillings and strong on-site repulsion. In this paper, we use quantum Monte Carlo simulations to study the ground state of the one dimensional bosonic Hubbard model in a trap. We show that some, but not all, aspects of the Mott insulating phase persist when a confining potential is present. The Mott behavior is present for a continuous range of incommensurate fillings, a very different situation from the unconfined case. Furthermore the establishment of the Mott phase does not proceed via a quantum phase transition in the traditional sense. These observations have important implications for the interpretation of experimental results for atoms trapped on optical lattices. Initial results show that, qualitatively, the same results persist in higher dimensions.Comment: Revtex file, five figures, include

    Quantum Monte Carlo Loop Algorithm for the t-J Model

    Full text link
    We propose a generalization of the Quantum Monte Carlo loop algorithm to the t-J model by a mapping to three coupled six-vertex models. The autocorrelation times are reduced by orders of magnitude compared to the conventional local algorithms. The method is completely ergodic and can be formulated directly in continuous time. We introduce improved estimators for simulations with a local sign problem. Some first results of finite temperature simulations are presented for a t-J chain, a frustrated Heisenberg chain, and t-J ladder models.Comment: 22 pages, including 12 figures. RevTex v3.0, uses psf.te

    Effects of Nonmagnetic Impurity Doping on Spin Ladder System

    Full text link
    Effects of nonmagnetic impurity doping on an AF spin-1/2 Heisenberg ladder system are studied by the QMC method. A single nonmagnetic impurity induces a localized spin-1/2 moment accompanied by "static" and enhanced AF correlations around it. Small and finite concentration of impurities induces a remarkable change of magnetic and thermodynamic properties with gapless excitations. It also shows rather sharp but continuous crossover around the concentration of about 4%. Above the crossover concentration, all the spins are strongly coupled participating in the enhanced and rather uniform power-law decay of the antiferromagnetic correlation. Below the crossover, each impurity forms an antiferromagnetic cluster only weakly coupled each other. For random distribution of impurities, large Curie-like susceptibility accompanied with small residual entropy is obtained at low temperatures in agreement with recent experimental observation in Zn-doped SrCu2O3SrCu_{2}O_{3}. Temperature dependence of AF susceptibility shows power-law-like but weaker divergence than the single chain AFH in the temperature range studied.Comment: 4 pages, LaTeX+epsf.sty, submitted to J.Phys.Soc.Jpn. New results of AF susceptibility are adde

    Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks

    Full text link
    Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance

    On the nature of the transition from the spontaneously dimerized to the Neel phase in the two-dimensional J1-J2 model

    Full text link
    We analyze the spectrum of the 2D S=1/2 frustrated Heisenberg model near the transition from the spontaneously dimerized spin-liquid phase into the Neel ordered phase. Two excitation branches: the triplet magnon, and the collective singlet mode, both become gapless at the transition point. However we find that the length scales associated with these modes are well separated at the quantum transition. While in the quantum disordered phase the singlet excitation has finite spectral weight and reflects the existence of spontaneous dimer order, near the transition point the size of the singlet bound state grows exponentially with the correlation length, and hence the quasiparticle residue is exponentially small. Therefore the critical dynamics remains in the O(3) universality class in spite of the four gapless modes.Comment: 5 pages, 3 figure

    Interacting anyons in topological quantum liquids: The golden chain

    Get PDF
    We discuss generalizations of quantum spin Hamiltonians using anyonic degrees of freedom. The simplest model for interacting anyons energetically favors neighboring anyons to fuse into the trivial (`identity') channel, similar to the quantum Heisenberg model favoring neighboring spins to form spin singlets. Numerical simulations of a chain of Fibonacci anyons show that the model is critical with a dynamical critical exponent z=1, and described by a two-dimensional conformal field theory with central charge c=7/10. An exact mapping of the anyonic chain onto the two-dimensional tricritical Ising model is given using the restricted-solid-on-solid (RSOS) representation of the Temperley-Lieb algebra. The gaplessness of the chain is shown to have topological origin.Comment: 5 pages, 4 figure

    Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

    Full text link
    We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the the on--site interaction in the BH model the robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature--interaction regimes
    • …
    corecore