81 research outputs found

    Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells

    Get PDF
    Future application of adult stem cells in clinical therapies largely depends on the successful isolation of homogeneous stem cells with high plasticity. Multipotent adult progenitor cells (MAPCs) are thought to be a more primitive stem cell population capable of extensive in vitro proliferation with no senescence or loss of differentiation capability. The present study was aimed to find a less complicated and more economical protocol for obtaining single cell-derived MAPCs and understand the molecule mechanism of multi-lineage differentiation of MAPCs. We successfully obtained a comparatively homogeneous population of MAPCs and confirmed that single cell-derived MAPCs were able to transcribe Oct4 and genes of three germ layers simultaneously, and differentiate into multiple lineages. Our observations suggest that single cell-derived MAPCs under appropriate circumstances could maintain not only characteristics of stem cells but multi-lineage differentiation potential through quantitative modulation of corresponding regulating gene expression, rather than switching on expression of specific genes

    Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow derived mesenchymal stem cells (MSCs) are promising candidates for cell based therapies in myocardial infarction. However, the exact underlying cellular mechanisms are still not fully understood. Our aim was to explore the possible role of direct cell-to-cell interaction between ischemic H9c2 cardiomyoblasts and normal MSCs. Using an in vitro ischemia model of 150 minutes of oxygen glucose deprivation we investigated cell viability and cell interactions with confocal microscopy and flow cytometry.</p> <p>Results</p> <p>Our model revealed that adding normal MSCs to the ischemic cell population significantly decreased the ratio of dead H9c2 cells (H9c2 only: 0.85 ± 0.086 vs. H9c2+MSCs: 0.16 ± 0.035). This effect was dependent on direct cell-to-cell contact since co-cultivation with MSCs cultured in cell inserts did not exert the same beneficial effect (ratio of dead H9c2 cells: 0.90 ± 0.055). Confocal microscopy revealed that cardiomyoblasts and MSCs frequently formed 200-500 nm wide intercellular connections and cell fusion rarely occurred between these cells.</p> <p>Conclusion</p> <p>Based on these results we hypothesize that mesenchymal stem cells may reduce the number of dead cardiomyoblasts after ischemic damage via direct cell-to-cell interactions and intercellular tubular connections may play an important role in these processes.</p

    Cell Transplant

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) are a most appealing source for cell replacement therapy in acute brain lesions. We evaluated the potential of hiPSC therapy in stroke by transplanting hiPSC-derived neural progenitor cells (NPCs) into the postischemic striatum. Grafts received host tyrosine hydroxylase-positive afferents and contained developing interneurons and homotopic GABAergic medium spiny neurons that, with time, sent axons to the host substantia nigra. Grafting reversed stroke-induced somatosensory and motor deficits. Grafting also protected the host substantia nigra from the atrophy that follows disruption of reciprocal striatonigral connections. Graft innervation by tyrosine hydoxylase fibers, substantia nigra protection, and somatosensory functional recovery were early events, temporally dissociated from the slow maturation of GABAergic neurons in the grafts and innervation of substantia nigra. This suggests that grafted hiPSC-NPCs initially exert trophic effects on host brain structures, which precede integration and potential pathway reconstruction. We believe that transplantation of NPCs derived from hiPSCs can provide useful interventions to limit the functional consequences of stroke through both neuroprotective effects and reconstruction of impaired pathways

    A GFP-lacZ Bicistronic Reporter System for Promoter Analysis in Environmental Gram-Negative Bacteria

    Get PDF
    Here, we describe a bicistronic reporter system for the analysis of promoter activity in a variety of Gram-negative bacteria at both the population and single-cell levels. This synthetic genetic tool utilizes an artificial operon comprising the gfp and lacZ genes that are assembled in a suicide vector, which is integrated at specific sites within the chromosome of the target bacterium, thereby creating a monocopy reporter system. This tool was instrumental for the complete in vivo characterization of two promoters, Pb and Pc, that drive the expression of the benzoate and catechol degradation pathways, respectively, of the soil bacterium Pseudomonas putida KT2440. The parameterization of these promoters in a population (using β-galactosidase assays) and in single cells (using flow cytometry) was necessary to examine the basic numerical features of these systems, such as the basal and maximal levels and the induction kinetics in response to an inducer (benzoate). Remarkably, GFP afforded a view of the process at a much higher resolution compared with standard lacZ tests; changes in fluorescence faithfully reflected variations in the transcriptional regimes of individual bacteria. The broad host range of the vector/reporter platform is an asset for the characterization of promoters in different bacteria, thereby expanding the diversity of genomic chasses amenable to Synthetic Biology methods

    Mesenchymal stem cell therapy on murine model of nonalcoholic steatohepatitis

    Get PDF
    A severely malfunctioning liver, due to acute liver injury or chronic liver disease, can lead to hepatic failure. The ultimate treatment for hepatic failure is liver transplantation; however, the availability of donors is a critical issue. Therefore, regenerative therapy is an anticipated novel approach for restoring liver function. Mesenchymal stem cells are pluripotent somatic cells that can differentiate into several cell types, including hepatocytes. Moreover, they are obtainable from easily accessible autologous adipose tissue, making them ideal for regenerative therapy. This chapter describes experimental methods for isolating mesenchymal stem cells from murine adipose tissues and expanding them, and also describes murine chronic liver disease, steatohepatitis, for the study of experimental regenerative treatments of chronic liver disease. © 2012 Springer Science+Business Media, LLC
    • …
    corecore