154 research outputs found

    Deep space experiment to measure GG

    Full text link
    Responding to calls from the National Science Foundation (NSF) for new proposals to measure the gravitational constant GG, we offer an interesting experiment in deep space employing the classic gravity train mechanism. Our setup requires three bodies: a larger layered solid sphere with a cylindrical hole through its center, a much smaller retroreflector which will undergo harmonic motion within the hole and a host spacecraft with laser ranging capabilities to measure round trip light-times to the retroreflector but ultimately separated a significant distance away from the sphere-retroreflector apparatus. Measurements of the period of oscillation of the retroreflector in terms of host spacecraft clock time using existing technology could give determinations of GG nearly three orders of magnitude more accurate than current measurements here on Earth. However, significant engineering advances in the release mechanism of the apparatus from the host spacecraft will likely be necessary. Issues with regard to the stability of the system are briefly addressed.Comment: 13 pp, 3 figs, accepted CQ

    Cerebellar volume is linked to cognitive function in temporal lobe epilepsy: A quantitative MRI study

    Get PDF
    AbstractIntroductionChronic intractable temporal lobe epilepsy (TLE) is associated with certain comorbidities including cognitive impairment. A less common condition among patients with TLE is intermittent explosive disorder (IED), a specific form of aggressive behavior that has been linked to low intelligence and structural pathology in the amygdala. We aimed to identify other neuroanatomical substrates of both cognitive dysfunction and IED in patients with TLE, with special focus on the cerebellum, a brain region known to participate in functional networks involved in neuropsychological and affective processes.MethodsMagnetic resonance imaging-based volumetric data from 60 patients with temporal lobe epilepsy (36 with and 24 without IED) were evaluated. Cerebellar, hippocampal, and total brain volumes were processed separately. In a total of 50 patients, the relationship between volumetric measurements and clinical and neuropsychological data (full-scale, verbal, and performance intelligence quotients) was analyzed.ResultsIntermittent explosive disorder in patients with TLE was not significantly linked to any of the regional volumes analyzed. However, cognitive performance showed a significant association both with total brain volume and cerebellar volume measurements, whereby the left cerebellar volume showed the strongest association. A deviation from normal cerebellar volumes was related to lower intelligence. Of note, left cerebellar volume was influenced by age and duration of epilepsy. Hippocampal volumes had a minor influence on cognitive parameters.ConclusionOur findings suggest that cerebellar volume is not linked to IED in patients with TLE but is significantly associated with cognitive dysfunction. Our findings support recent hypotheses proposing that the cerebellum has a relevant functional topography

    The functional neuroimaging correlates of psychogenic versus organic dystonia

    Get PDF
    The neurobiological basis of psychogenic movement disorders remains poorly understood and the management of these conditions difficult. Functional neuroimaging studies have provided some insight into the pathophysiology of disorders implicating particularly the prefrontal cortex, but there are no studies on psychogenic dystonia, and comparisons with findings in organic counterparts are rare. To understand the pathophysiology of these disorders better, we compared the similarities and differences in functional neuroimaging of patients with psychogenic dystonia and genetically determined dystonia, and tested hypotheses on the role of the prefrontal cortex in functional neurological disorders. Patients with psychogenic (n = 6) or organic (n = 5, DYT1 gene mutation positive) dystonia of the right leg, and matched healthy control subjects (n = 6) underwent positron emission tomography of regional cerebral blood flow. Participants were studied during rest, during fixed posturing of the right leg and during paced ankle movements. Continuous surface electromyography and footplate manometry monitored task performance. Averaging regional cerebral blood flow across all tasks, the organic dystonia group showed abnormal increases in the primary motor cortex and thalamus compared with controls, with decreases in the cerebellum. In contrast, the psychogenic dystonia group showed the opposite pattern, with abnormally increased blood flow in the cerebellum and basal ganglia, with decreases in the primary motor cortex. Comparing organic dystonia with psychogenic dystonia revealed significantly greater regional blood flow in the primary motor cortex, whereas psychogenic dystonia was associated with significantly greater blood flow in the cerebellum and basal ganglia (all P < 0.05, family-wise whole-brain corrected). Group × task interactions were also examined. During movement, compared with rest, there was abnormal activation in the right dorsolateral prefrontal cortex that was common to both organic and psychogenic dystonia groups (compared with control subjects, P < 0.05, family-wise small-volume correction). These data show a cortical-subcortical differentiation between organic and psychogenic dystonia in terms of regional blood flow, both at rest and during active motor tasks. The pathological prefrontal cortical activation was confirmed in, but was not specific to, psychogenic dystonia. This suggests that psychogenic and organic dystonia have different cortical and subcortical pathophysiology, while a derangement in mechanisms of motor attention may be a feature of both condition

    Neuropsychiatry of creativity.

    Get PDF
    In this paper, we review in brief the development of ideas that over time have tried to explain why some individuals are more creative than others and what may be the neurobiological links underlying artistic creativity. We note associations with another unique human idea, that of genius. In particular, we discuss frontotemporal dementia and bipolar, cyclothymic mood disorder as clinical conditions that are helping to unravel the underlying neuroanatomy and neurochemistry of human creativity. This article is part of a Special Issue entitled "Epilepsy, Art, and Creativity"

    Perspectives on Astrophysics Based on Atomic, Molecular, and Optical (AMO) Techniques

    Get PDF
    About two generations ago, a large part of AMO science was dominated by experimental high energy collision studies and perturbative theoretical methods. Since then, AMO science has undergone a transition and is now dominated by quantum, ultracold, and ultrafast studies. But in the process, the field has passed over the complexity that lies between these two extremes. Most of the Universe resides in this intermediate region. We put forward that the next frontier for AMO science is to explore the AMO complexity that describes most of the Cosmos.Comment: White paper submission to the Decadal Assessment and Outlook Report on Atomic, Molecular, and Optical (AMO) Science (AMO 2020

    An Ethnohistorical Perspective on Cheyenne Demography

    Get PDF
    Administrative censuses of the Southern Cheyenne Indians from 1880,1891, and 1900 permit family reconstitution, identification of residence groups, and comparisons of fertility between monogamous and polygynous women, when the records are approached by ethnohistori cal methods. This approach includes an awareness of the aboriginal adoption practices, kinship system, and naming practices. It is argued that the biases and distortions of administrative records can be effectively corrected to add to our store of information on band and tribal societies.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Halo Cold Dark Matter and Microlensing

    Full text link
    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least 10^{-25}\gcmm3. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.Comment: 11 pages Latex, 2 ps figures. FNAL-Pub-93/357-
    corecore