430 research outputs found

    Expanding the taxonomic and environmental extent of an underexplored carbon metabolism—oxalotrophy

    Get PDF
    Oxalate serves various functions in the biological processes of plants, fungi, bacteria, and animals. It occurs naturally in the minerals weddellite and whewellite (calcium oxalates) or as oxalic acid. The environmental accumulation of oxalate is disproportionately low compared to the prevalence of highly productive oxalogens, namely plants. It is hypothesized that oxalotrophic microbes limit oxalate accumulation by degrading oxalate minerals to carbonates via an under-explored biogeochemical cycle known as the oxalate-carbonate pathway (OCP). Neither the diversity nor the ecology of oxalotrophic bacteria is fully understood. This research investigated the phylogenetic relationships of the bacterial genes oxc, frc, oxdC, and oxlT, which encode key enzymes for oxalotrophy, using bioinformatic approaches and publicly available omics datasets. Phylogenetic trees of oxc and oxdC genes demonstrated grouping by both source environment and taxonomy. All four trees included genes from metagenome-assembled genomes (MAGs) that contained novel lineages and environments for oxalotrophs. In particular, sequences of each gene were recovered from marine environments. These results were supported with marine transcriptome sequences and description of key amino acid residue conservation. Additionally, we investigated the theoretical energy yield from oxalotrophy across marine-relevant pressure and temperature conditions and found similar standard state Gibbs free energy to “low energy” marine sediment metabolisms, such as anaerobic oxidation of methane coupled to sulfate reduction. These findings suggest further need to understand the role of bacterial oxalotrophy in the OCP, particularly in marine environments, and its contribution to global carbon cycling

    Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Get PDF
    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems

    Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Butterfield, D. A., & Huber, J. A. Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. Isme Journal, 13(9), (2019): 2264-2279, doi: 10.1038/s41396-019-0431-y.There are many unknowns regarding the distribution, activity, community composition, and metabolic repertoire of microbial communities in the subseafloor of deep-sea hydrothermal vents. Here we provide the first characterization of subseafloor microbial communities from venting fluids along the central Mariana back-arc basin (15.5–18°N), where the slow-spreading rate, depth, and variable geochemistry along the back-arc distinguish it from other spreading centers. Results indicated that diverse Epsilonbacteraeota were abundant across all sites, with a population of high temperature Aquificae restricted to the northern segment. This suggests that differences in subseafloor populations along the back-arc are associated with local geologic setting and resultant geochemistry. Metatranscriptomics coupled to stable isotope probing revealed bacterial carbon fixation linked to hydrogen oxidation, denitrification, and sulfide or thiosulfate oxidation at all sites, regardless of community composition. NanoSIMS (nanoscale secondary ion mass spectrometry) incubations at 80 °C show only a small portion of the microbial community took up bicarbonate, but those autotrophs had the highest overall rates of activity detected across all experiments. By comparison, acetate was more universally utilized to sustain growth, but within a smaller range of activity. Together, results indicate that microbial communities in venting fluids from the Mariana back-arc contain active subseafloor communities reflective of their local conditions with metabolisms commonly shared across geologically disparate spreading centers throughout the ocean.This work was funded by the NOAA Ocean Exploration and Research (OER) Program, the NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564), and NOAA/PMEL and JISAO under NOAA Cooperative Agreement NA15OAR4320063. ETR was supported by a NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and a L’Oréal USA For Women in Science Fellowship. The data collected in this study includes work supported by the Schmidt Ocean Institute during cruise FK161129 aboard R/V Falkor. We thank the captains and crews of the R/V Falkor and ROV SuBastian. Critical support in cruise planning and sampling at sea was carried out by Andra Bobbitt, Bill Chadwick, Bob Embley, Ben Larson, and Kevin Roe. Caroline Fortunato, Connor Skennerton, Rika Anderson, Karthik Anantharaman, Jaclyn Saunders, Hank Yu, Lewis Ward, Elaina Graham, and Ben Tully aided bioinformatics pipeline development and Victoria Orphan and Yunbin Guan aided with NanoSIMS analysis. This is C-DEBI Contribution 470, JISAO Contribution 2018-0173, and PMEL Contribution 4867

    Four hundred million years of silica biomineralization in land plants

    Get PDF
    Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history

    Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Trembath-Reichert, E., Tully, B. J., & Huber, J. A. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. Isme Journal, (2020), doi:10.1038/s41396-020-00843-4.The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by NSF OCE-1062006, OCE-1745589 and OCE-1635208 to J.A.H. E.T.R. was supported by a NASA Postdoctoral Fellowship with the NASA Astrobiology Institute and a L’Oréal USA For Women in Science Fellowship. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and B.T. This is C-DEBI contribution number 548

    Geography, not lifestyle, explains the population structure of free-living and host-associated deep-sea hydrothermal vent snail symbionts

    Get PDF
    Background: Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. Results: Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. Conclusion: Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition

    Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses

    Get PDF
    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5′-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no ^(15)NH^+_4 assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active ‘free-living’ population, and are not dependent on methane or ANME activity. We investigated the possibility of N_2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. ^(15)N_2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, ^(15)N_2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced ^(15)N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. With this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit of measuring microbial activity in the context of spatial associations

    Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds

    Get PDF
    The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of ^(13)C- or ^(15)N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates

    Gene Sequencing-Based Analysis of Microbial-Mat Morphotypes, Caicos Platform, British West Indies

    Get PDF
    Active carbonate platforms provide modern analogs to study microbial-mat development and taphonomy in the sedimentary record. Microbial-mat descriptions and classifications for tropical tidal-flat environments have focused predominantly on morphological observations. This is exemplified by flat and biscuit-shaped mats, where the mat morphotypes are postulated to reflect different Cyanobacteria communities as the main mat-building taxa. To compare the total microbial communities of these two mat types and test this Cyanobacteria hypothesis, we applied optical microscopy and gene sequencing methods using samples from a tidal algal marsh on Little Ambergris Cay, Turks and Caicos, B.W.I. With gene sequencing we find that total diversity and community composition differs significantly between morphotypes; the biscuit mat is more diverse than the flat mat. Microscopy results support that Cyanobacteria populations colonizing the surface layer of these two mat types are responsible for much of the mat's structural elements; however, genetic data find the Cyanobacteria population is indistinguishable between the two mat types. The recovered Cyanobacteria populations fall predominantly into three taxa: Scytonema, Halomicronema, and Crinalium. We propose that the morphology of these two mat types is not controlled by the Cyanobacteria, but instead reflects a time-integrated microbial response to environmental factors, where the microbial community becomes more diverse with time since environmental disturbance

    Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Shah Walter, S. R., Ortiz, M. A. F., Carter, P. D., Girguis, P. R., & Huber, J. A. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Science Advances, 7(18), (2021): eabg0153, https://doi.org/10.1126/sciadv.abg0153.Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by the National Science Foundation through grants NSF OCE-1745589, OCE-1635208, and OCE-1062006 to J.A.H. and NSF OCE-1635365 to P.R.G. and S.R.S.W.; NASA Postdoctoral Fellowship with the NASA Astrobiology Institute to E.T.-R.; L’Oréal USA For Women in Science Fellowship to E.T.-R.; and Woods Hole Partnership Education Program, sponsored by the Woods Hole Diversity Initiative to M.A.F.O. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and P.D.C. This is C-DEBI contribution number 564
    corecore