3,140 research outputs found

    Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression

    Full text link
    Infrared femtosecond laser pulses are important tools both in strong-field physics, driving X-ray high-harmonic generation, and as the basis for widely tuneable, if inefficient, ultrafast sources in the visible and ultraviolet. Although anomalous material dispersion simplifies compression to few-cycle pulses, attosecond pulses in the infrared have remained out of reach. We demonstrate soliton self-compression of 1800 nm laser pulses in hollow capillary fibers to sub-cycle envelope duration (2 fs) with 27 GW peak power, corresponding to attosecond field transients. In the same system, we generate wavelength-tuneable few-femtosecond pulses from the ultraviolet (300 nm) to the infrared (740 nm) with energy up to 25 μ\muJ and efficiency up to 12 %, and experimentally characterize the generation dynamics in the time-frequency domain. A compact second stage generates multi-μ\muJ pulses from 210 nm to 700 nm using less than 200 μ\muJ of input energy. Our results significantly expand the toolkit available to ultrafast science.Comment: 8 pages, 5 figure

    High-energy ultraviolet dispersive-wave emission in compact hollow capillary systems

    Get PDF
    We demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34cm) hollow capillary fibres. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 μ\mum) and pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to 6 μ\muJ across the deep ultraviolet in a 100 μ\mum capillary and up to 11 μ\muJ in a 150 μ\mum capillary. From comparisons to simulations we estimate the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study the influence of pump duration on the bandwidth of the dispersive wave.Comment: 5 pages, 3 figure

    Near-ionization-threshold emission in atomic gases driven by intense sub-cycle pulses

    Full text link
    We study theoretically the dipole radiation of a hydrogen atom driven by an intense sub-cycle pulse. The time-dependent Schr\"odinger equation for the system is solved by ab initio calculation to obtain the dipole response. Remarkably, a narrowband emission lasting longer than the driving pulse appears at a frequency just above the ionization threshold. An additional calculation using the strong field approximation also recovers this emission, which suggests that it corresponds to the oscillation of nearly-bound electrons that behave similarly to Rydberg electrons. The predicted phenomenon is unique to ultrashort driving pulses but not specific to any particular atomic structure.Comment: 8 pages, 2 figure

    Optical Solitons in Hollow-Core Fibres

    Full text link
    I review the historical observation and subsequent research on optical soliton dynamics in gas-filled hollow-core optical fibres. I include both large-core hollow capillary fibres, and hollow-core photonic-crystal or microstructured fibres with smaller cores, in particular photonic bandgap and antiresonant guiding fibres. I discuss how the optical guidance properties of these different fibre structures influence the soliton dynamics that can be obtained. The dynamics I consider include: soliton propagation at peak power levels ranging from the megawatt to terawatt level, and pulse energies from sub-microjoule to millijoule range; pulse self-compression, leading to sub-cycle and sub-femtosecond pulse duration; soliton self-frequency shifting due to both the Raman effect, and the influence of photoionisation and plasma formation; and resonant dispersive wave emission, leading to the generation of tuneable few-femtosecond pulses across the vacuum and deep ultraviolet, visible, and near-infrared spectral regions

    Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes

    Full text link
    Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of fused silica while being free of Raman scattering. It also has a much higher optical damage threshold and a transparency window that extends from the UV to the infrared. We report the observation of nonlinear phenomena, such as self-phase modulation, in hollow-core photonic crystal fiber filled with supercritical Xe. In the subcritical regime, intermodal four-wave-mixing resulted in the generation of UV light in the HE12 mode. The normal dispersion of the fiber at high pressures means that spectral broadening can clearly obtained without influence from soliton effects or material damage

    Continuously wavelength-tunable high harmonic generation via soliton dynamics

    Full text link
    We report generation of high harmonics in a gas-jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas-jet is placed directly at the fiber output. As the energy increases the ionization-induced soliton blue-shift is transferred to the high harmonics, leading to a emission bands that are continuously tunable from 17 to 45 eV
    corecore