108 research outputs found

    Early efficacy of CABG care delivery in a low procedure-volume community hospital: operative and midterm results

    Get PDF
    BACKGROUND: The Leapfrog Group recommended that coronary artery bypass grafting (CABG) surgery should be done at high volume hospitals (>450 per year) without corresponding surgeon-volume criteria. The latter confounds procedure-volume effects substantially, and it is suggested that high surgeon-volume (>125 per year) rather than hospital-volume may be a more appropriate indicator of CABG quality. METHODS: We assessed 3-year isolated CABG morbidity and mortality outcomes at a low-volume hospital (LVH: 504 cases) and compared them to the corresponding Society of Thoracic Surgeons (STS) national data over the same period (2001–2003). All CABGs were performed by 5 high-volume surgeons (161–285 per year). "Best practice" care at LVH – including effective practice guidelines, protocols, data acquisition capabilities, case review process, dedicated facilities and support personnel – were closely modeled after a high-volume hospital served by the same surgeon-team. RESULTS: Operative mortality was similar for LVH and STS (OM: 2.38% vs. 2.53%), and the corresponding LVH observed-to-expected mortality (O/E = 0.81) indicated good quality relative to the STS risk model (O/E<1). Also, these results were consistent irrespective of risk category: O/E was 0, 0.9 and 1.03 for very-low risk (<1%), low risk (1–3%) and moderate-to-high risk category (>3%), respectively. Postoperative leg wound infections, ventilator hours, renal dysfunction (no dialysis), and atrial fibrillation were higher for LVH, but hospital stay was not. The unadjusted Kaplan-Meier survival for the LVH cohort was 96%, 94%, and 92% at one, two, and three years, respectively. CONCLUSION: Our results demonstrated that high quality CABG care can be achieved at LVH programs if 1) served by high volume surgeons and 2) patient care procedures similar to those of large programs are implemented. This approach may prove a useful paradigm to ensure high quality CABG care and early efficacy at low volume institutions that wish to comply with the Leapfrog standards

    Is caching the key to exclusion in corvids? The case of carrion crows (Corvus corone corone)

    Get PDF
    Recently, two corvid species, food-caching ravens and non-caching jackdaws, have been tested in an exclusion performance (EP) task. While the ravens chose by exclusion, the jackdaws did not. Thus, foraging behaviour may affect EP abilities. To investigate this possibility, another food-caching corvid species, the carrion crow (Corvus corone corone), was tested in the same exclusion task. We hid food under one of two cups and subsequently lifted either both cups, or the baited or the un-baited cup. The crows were significantly above chance when both cups were lifted or when only the baited cup was lifted. When the empty cup was lifted, we found considerable inter-individual variation, with some birds having a significant preference for the un-baited but manipulated cup. In a follow-up task, we always provided the birds with the full information about the food location, but manipulated in which order they saw the hiding or the removal of food. Interestingly, they strongly preferred the cup which was manipulated last, even if it did not contain any food. Therefore, we repeated the first experiment but controlled for the movement of the cups. In this case, more crows found the food reliably in the un-baited condition. We conclude that carrion crows are able to choose by exclusion, but local enhancement has a strong influence on their performance and may overshadow potential inferential abilities. However, these findings support the hypothesis that caching might be a key to exclusion in corvids

    Adult-Onset Obesity Reveals Prenatal Programming of Glucose-Insulin Sensitivity in Male Sheep Nutrient Restricted during Late Gestation

    Get PDF
    BACKGROUND: Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS: Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS: This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation

    Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1

    Get PDF
    Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
    corecore