8 research outputs found

    Layer-by-Layer Growth of Graphene Sheets over Selected Areas for Semiconductor Device Applications

    No full text
    We report an in situ imaging method and use it to reveal the mechanism for the formation of extended size sheets of graphene (carpets) in few-layer graphene using the solid-state process, taking place via a layer-by-layer growth mechanism, which can result in a stack of separate individual layers of graphene. This mechanism is revealed by an imaging method that allows the use of conventional (unmodified) scanning electron microscopy to image graphene growth in situ and in real time. With this dynamic imaging, we reveal for the first time the dynamics of flake nucleation and growth and show the dynamics of flake coalescence to form extended size polycrystalline graphene carpets, allowing one to deduce a growth model. This growth method produces graphene flakes with Raman spectral characteristics that closely resemble those from exfoliated flakes obtained using the “Scotch-tape” method. The material is highly electronically intrinsic, with I 2D/I G ratios as high as 5. The kinetics of electronic interconnectivity between flakes during blanket formation is imaged dynamically using a doping level contrast in an electron microscope in real time. Furthermore, the observations reveal that it is possible to maximize the time between the formation of each individual blanket, up to several minutes, thus facilitating the production of multiple decoupled graphene layers of precise thickness. This allows one to control the number of layers produced even when using catalysts of high activity and high-carbon solubility such as Fe

    Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity

    No full text
    We report a method for the growth of carbon nanotubes on carbon fibre using a low temperature growth technique which is infused using a standard industrial process, to create a fuzzy fibre composite with enhanced electrical characteristics. Conductivity tests reveal improvements of 510% in the out-of-plane and 330% in the in-plane direction for the nanocomposite compared to the reference composite. Further analysis of current-voltage (I-V) curves confirm a transformation in the electron transport mechanism from charge - hopping in the conventional material, to an Ohmic diffusive mechanism for the carbon nanotube modified composite. Single fibre tensile tests reveal a tensile performance decrease of only 9.7% after subjecting it to our low temperature carbon nanotube growth process, which is significantly smaller than previous reports. Our low-temperature growth process uses substrate water-cooling to maintain the bulk of the fibre material at lower temperatures, whilst the catalyst on the surface of the carbon fibre is at optimally higher temperatures required for carbon nanotube growth. The process is large-area production compatible with bulk-manufacturing of carbon fibre polymer composites. © 2014 Elsevier Ltd. All rights reserved

    High efficiency air stable organic photovoltaics with an aqueous inorganic contact

    No full text
    We report a ZnO interfacial layer based on an environmentally friendly aqueous precursor for organic photovoltaics. Inverted PCDTBT devices based on this precursor show power conversion efficiencies of 6.8–7%. Unencapsulated devices stored in air display prolonged lifetimes extending over 200 hours with less than 20% drop in efficiency compared to devices based on the standard architecture
    corecore