21 research outputs found

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Brain Stem Death as the Vital Determinant for Resumption of Spontaneous Circulation after Cardiac Arrest in Rats

    Get PDF
    BACKGROUND:Spontaneous circulation returns to less than half of adult cardiac arrest victims who received in-hospital resuscitation. One clue for this disheartening outcome arises from the prognosis that asystole invariably takes place, after a time lag, on diagnosis of brain stem death. The designation of brain stem death as the point of no return further suggests that permanent impairment of the brain stem cardiovascular regulatory machinery precedes death. It follows that a crucial determinant for successful revival of an arrested heart is that spontaneous circulation must resume before brain stem death commences. Here, we evaluated the hypothesis that maintained functional integrity of the rostral ventrolateral medulla (RVLM), a neural substrate that is intimately related to brain stem death and central circulatory regulation, holds the key to the vital time-window between cardiac arrest and resumption of spontaneous circulation. METHODOLOGY/PRINCIPAL FINDINGS:An animal model of brain stem death employing the pesticide mevinphos as the experimental insult in Sprague-Dawley rats was used. Intravenous administration of lethal doses of mevinphos elicited an abrupt cardiac arrest, accompanied by elevated systemic arterial pressure and anoxia, augmented neuronal excitability and enhanced microvascular perfusion in RVLM. This period represents the vital time-window between cardiac arrest and resumption of spontaneous circulation in our experimental model. Animals with restored spontaneous circulation exhibited maintained neuronal functionality in RVLM beyond this critical time-window, alongside resumption of baseline tissue oxygen and enhancement of local blood flow. Intriguingly, animals that subsequently died manifested sustained anoxia, diminished local blood flow, depressed mitochondrial electron transport activities and reduced ATP production, leading to necrotic cell death in RVLM. That amelioration of mitochondrial dysfunction and bioenergetic failure in RVLM by coenzyme Q10, the mobile electron carrier in mitochondrial respiratory chain, or oxygenation restored spontaneous circulation further established a causal relationship between functionality of RVLM and resumed spontaneous circulation after cardiac arrest. CONCLUSIONS/SIGNIFICANCE:We conclude that whereas necrotic cell death because of bioenergetic failure triggered by anoxia in RVLM, which precipitates brain stem death, negates resuscitation of an arrested heart, maintained functional integrity of this neural substrate holds the key to resumption of spontaneous circulation after cardiac arrest in rats

    Serum immunoglobulin G, M and A response to Cryptosporidium parvum in Cryptosporidium-HIV co-infected patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cryptosporidium parvum</it>, the protozoan parasite, causes a significant enteric disease in immunocompromised hosts such as HIV patients. The present study was aimed to compare serum IgG, IgM and IgA responses to crude soluble antigen of <it>C. parvum </it>in HIV seropositive and seronegative patients co-infected with <it>Cryptosporidium </it>and to correlate the responses with symptomatology.</p> <p>Methods</p> <p><it>Cryptosporidium parvum </it>specific serum antibody (IgG, IgM and IgA) responses were assessed by ELISA in 11 HIV seropositive <it>Cryptosporidium </it>positive (Group I), 20 HIV seropositive <it>Cryptosporidium </it>negative (Group II), 10 HIV seronegative <it>Cryptosporidium </it>positive (Group III), 20 HIV seronegative <it>Cryptosporidium </it>negative healthy individuals (Group IV) and 25 patients with other parasitic diseases (Group V).</p> <p>Results</p> <p>A positive IgG and IgA antibody response was observed in significantly higher number of <it>Cryptosporidium </it>infected individuals (Gp I and III) compared to <it>Cryptosporidium </it>un-infected individuals (Gp II, IV and V) irrespective of HIV/immune status. Sensitivity of IgG ELISA in our study was found to be higher as compared to IgM and IgA ELISA. The number of patients with positive IgG, IgM and IgA response was not significantly different in HIV seropositive <it>Cryptosporidium </it>positive patients with diarrhoea when compared to patients without diarrhoea and in patients with CD4 counts <200 when compared to patients with CD4 counts >200 cells/μl.</p> <p>Conclusion</p> <p>The study showed specific serum IgG and IgA production in patients infected with <it>Cryptosporidium</it>, both HIV seropositive and seronegative as compared to uninfected subjects suggesting induction of <it>Cryptosporidium </it>specific humoral immune response in infected subjects. However, there was no difference in number of patients with positive response in HIV seropositive or seronegative groups indicating that HIV status may not be playing significant role in modulation of <it>Cryptosporidium </it>specific antibody responses. The number of patients with positive IgG, IgM and IgA response was not significantly different in patients with or without history of diarrhoea thereby indicating that <it>Cryptosporidium </it>specific antibody responses may not be necessarily associated with protection from symptomatology.</p
    corecore