1 research outputs found

    Association of Genetic Scores Related to Insulin Resistance With Neurological Outcomes in Ancestrally Diverse Cohorts From the Trans-Omics for Precision Medicine (TOPMed) Program

    No full text
    To better characterize the potential biological mechanisms underlying insulin resistance (IR) and dementia, we derive cross-population and population specific polygenic scores [PSs] for fasting insulin and IR-related partitioned PSs [pPSs]. We conduct a cross-sectional study of the associations of these genetic scores with neurological outcomes in \u3e17k participants (36% men, mean age 55 yrs) from the Trans-Omics for Precision Medicine (TOPMed) program (50% Non-Hispanic White, 23% Black/African American, 21% Hispanic/Latino American, and 4% Asian American). We report significant negative associations (P \u3c  0.002) of the cross-population (P = 1.3 × 10-5) and European (PEA = 3.0 × 10-8) fasting insulin PSs with total cranial volume, and of a metabolic syndrome European PS with general cognitive function (BEA = -0.13, PEA = 0.0002) and lateral ventricular volume (BEA = 0.09, PEA = 0.002). We identify suggestive negative associations (P \u3c  0.007) of metabolic syndrome and obesity pPSs with general cognitive function, and of lipodystrophy pPSs with total cranial volume. A higher genetic predisposition to IR is associated with lower brain size, and a genetic predisposition to specific IR-related type 2 diabetes subtypes, such as metabolic syndrome and mechanisms of IR mediated through obesity and lipodystrophy, is potentially involved in cognitive decline
    corecore