11,727 research outputs found
A Parameterized Centrality Metric for Network Analysis
A variety of metrics have been proposed to measure the relative importance of
nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures
the number of attenuated paths that exist between nodes. We introduce a
normalized version of this metric and use it to study network structure,
specifically, to rank nodes and find community structure of the network.
Specifically, we extend the modularity-maximization method [Newman and Girvan,
2004] for community detection to use this metric as the measure of node
connectivity. Normalized alpha-centrality is a powerful tool for network
analysis, since it contains a tunable parameter that sets the length scale of
interactions. By studying how rankings and discovered communities change when
this parameter is varied allows us to identify locally and globally important
nodes and structures. We apply the proposed method to several benchmark
networks and show that it leads to better insight into network structure than
alternative methods.Comment: 11 pages, submitted to Physical Review
Separable states and the geometric phases of an interacting two-spin system
It is known that an interacting bipartite system evolves as an entangled
state in general, even if it is initially in a separable state. Due to the
entanglement of the state, the geometric phase of the system is not equal to
the sum of the geometric phases of its two subsystems. However, there may exist
a set of states in which the nonlocal interaction does not affect the
separability of the states, and the geometric phase of the bipartite system is
then always equal to the sum of the geometric phases of its subsystems. In this
paper, we illustrate this point by investigating a well known physical model.
We give a necessary and sufficient condition in which a separable state remains
separable so that the geometric phase of the system is always equal to the sum
of the geometric phases of its subsystems.Comment: 13 page
The surface accessibility of α-bungarotoxin monitored by a novel paramagnetic probe
The surface accessibility of {alpha}-bungarotoxin has been investigated by using Gd2L7, a newly designed paramagnetic NMR probe. Signal attenuations induced by Gd2L7 on {alpha}-bungarotoxin C{alpha}H peaks of 1H-13C HSQC spectra have been analyzed and compared with the ones previously obtained in the presence of GdDTPA-BMA. In spite of the different molecular size and shape, for the two probes a common pathway of approach to the {alpha}-bungarotoxin surface can be observed with an equally enhanced access of both GdDTPA-BMA and Gd2L7 towards the protein surface side where the binding site is located. Molecular dynamics simulations suggest that protein backbone flexibility and surface hydration contribute to the observed preferential approach of both gadolinium complexes specifically to the part of the {alpha}-bungarotoxin surface which is involved in the interaction with its physiological target, the nicotinic acetylcholine receptor
Electron localization and magnetism in SrRuO\u3csub\u3e3\u3c/sub\u3e with non-magnetic cation substitution
The destruction of the ferromagnetism of alloyed SrRuO3 can be caused by electron localization at the substitution sites. Among all the non-magnetic cations that enter the B site, Zr4+ is the least disruptive to conductivity and ferromagnetism. This is because Zr4+ does not cause any charge disorder, and its empty d electron states which are poorly matched in energy with the Ru t2g4 states cause the least resonance scattering of Ru’s d electrons. Conducting Sr(Ru, Zr)O3 may be used as an electrode for perovskite-based thin film devices, while its insulating counterpart provides unprecedented magnetoresistance, seldom seen in other non-manganite and non-cobaltite perovskites.
(Some figures in this article are in colour only in the electronic version
New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences
Motivated by the AMS project, we assume that after the Big Bang or inflation
epoch, antimatter was repelled onto one brane which is separated from our brane
where all the observational matter resides. It is suggested that CP may be
spontaneously broken, the two branes would correspond to ground states for
matter and antimatter respectively. Generally a complex scalar field which is
responsible for the spontaneous CP violation, exists in the space between the
branes and causes a repulsive force against the gravitation. A possible
potential barrier prevents the mater(antimatter) particles to enter the space
between two branes. However, by the quantum tunnelling, a sizable anti-matter
flux may come to our brane. In this work by considering two possible models,
i.e. the naive flat space-time and Randall-Sundrum models and using the
observational data on the visible matter in our universe as inputs, we derive
the antimatter flux which would be observed by the AMS detector.Comment: 10 pages, 4 figures and 2 tables. Replaced by new versio
- …