15 research outputs found

    Parietal/premotor lesions effects on visuomotor cognition in neuro-oncology patients: A multimodal study

    Get PDF
    Background: Assessing prior to surgery the functionality of brain areas exposed near the tumor requires a multimodal approach that combines the use of neuropsychological testing and fMRI tasks. Paradigms based on motor imagery, which corresponds to the ability to mentally evoke a movement, in the absence of actual action execution, can be used to test sensorimotor areas and the functionality of mental motor representations. Methods: The most commonly used paradigm is the Limb Laterality Recognition Task (LLRT), requiring judgments about whether a limb belongs to the left or right side of the body. The group studied included 38 patients with high-grade (N = 21), low-grade (N = 11) gliomas and meningiomas (N = 6) in areas anterior (N = 21) and posterior (N = 17) to the central sulcus. Patients before surgery underwent neuropsychological assessment and fMRI. They performed the LLRT as an fMRI task. Accuracy, and neuroimaging data were collected and combined in a multimodal study. Structural MRI data analyses were performed by subtracting the overlap of volumes of interest (VOIs) plotted on lesions from the impaired patient group vs the overlap of VOIs from the spared group. The fMRI analyses were performed comparing the impaired patients and spared group. Results: In general, patients were within normal limits on many neuropsychological screening tests. Compared with the control group, 17/38 patients had significantly different performance. The subtraction between the VOIs overlay of the impaired patients' group vs. the VOIs overlay of the spared group revealed that the areas maximally involved by lesions in the impaired patients' group were the right postcentral gyrus, right inferior parietal lobe, right supramarginal gyrus, right precentral gyrus, paracentral lobule, left postcentral gyrus, right superior parietal lobe, left inferior parietal lobe, and left superior and middle frontal gyrus. Analysis of the fMRI data showed which of these areas contributes to a correct LLRT performance. The task (vs. rest) in the group comparison (spared vs. impaired patients) activated a cluster in the left inferior parietal lobe. Conclusion: Underlying the altered performance at LLRT in patients with lesions to the parietal and premotor areas of the right and left hemispheres is a difference in activation of the left inferior parietal lobe. This region is involved in visuomotor processes and those related to motor attention, movement selection, and motor planning

    Effects of age and gender on neural correlates of emotion imagery

    Get PDF
    Mental imagery is part of people's own internal processing and plays an important role in everyday life, cognition and pathology. The neural network supporting mental imagery is bottom-up modulated by the imagery content. Here, we examined the complex associations of gender and age with the neural mechanisms underlying emotion imagery. We assessed the brain circuits involved in emotion mental imagery (vs. action imagery), controlled by a letter detection task on the same stimuli, chosen to ensure attention to the stimuli and to discourage imagery, in 91 men and women aged 14-65 years using fMRI. In women, compared with men, emotion imagery significantly increased activation within the right putamen, which is involved in emotional processing. Increasing age, significantly decreased mental imagery-related activation in the left insula and cingulate cortex, areas involved in awareness of ones' internal states, and it significantly decreased emotion verbs-related activation in the left putamen, which is part of the limbic system. This finding suggests a top-down mechanism by which gender and age, in interaction with bottom-up effect of type of stimulus, or directly, can modulate the brain mechanisms underlying mental imagery

    Identifying environmental sounds: a multimodal mapping study

    Get PDF
    Our environment is full of auditory events such as warnings or hazards, and their correct recognition is essential. We explored environmental sound (ES) recognition in a series of studies. In study 1 we performed an Activation Likelihood Estimation (ALE) meta-Analysis of neuroimaging studies addressing ES processing to delineate the network of areas consistently involved in ES processing. In study 2 we reported a series of 7 neurosurgical patients with lesions involving the areas found consistently activated by the ALE meta-analysis and tested their ES recognition abilities. In study 3 we investigated how the areas involved in ES might be functionally deregulated as an effect of lesion by performing an fMRI study on patients (in comparison to healthy controls). Areas found to be consistently activated in the ALE quantitative meta-analysis involved the STG/MTG, insula/rolandic operculum, parahippocampal gyrus and inferior frontal gyrus complex bilaterally. Some of these areas were found modulated by design choices, e.g., type of task, type of control condition, type of stimuli. Patients with lesions in these areas of the left and the right hemisphere had an impaired ES recognition. The most frequently lesioned area corresponded to the hippocampus/insula/superior temporal gyrus. For the most part, the patients’ responses were unrelated to the target sounds or were semantically related to the target sounds. The other type of responses were: auditorily related, semantically and auditorily related, and I don't Know answers. The fMRI evidenced deregulations of the activation reported in the right IFG and in the STG bilaterally and in the left insula. We showed that some of these clusters of activation truly reflect ES processing, whereas others are related to design choices. Our results allowed a parcelization of the activation found along the MTG/STG are

    Pediatric ultrasound-guided dorsal penile nerve block and sedation in spontaneous breathing: a prospective observational study

    Get PDF
    BackgroundWorldwide, one of the most common surgical procedures in the pediatric population is circumcision. There is no consent on the best anesthesiologic approach. This study aimed to investigate ultrasound-guided dorsal penile nerve block (DPNB) plus sedation in spontaneous breathing as a time-saving, safe, effective, and opioid-sparing technique.AimsThe primary outcome was the assessment of the time from the end of surgery and the discharge to the post-anesthesia care unit. Secondary outcomes were to evaluate the cumulative dosages of opioids, differences in pain levels between the two groups, and complications at the awakening, 4 h and 72 h after surgery, respectively.MethodsThis was a prospective study with a retrospective control group, approved by the Friuli–Venezia Giulia Ethics Committee. Children in the intervention group received an ultrasound-guided DPNB under sedation and spontaneous breathing. With the probe positioned transversally at the base of the penis using an in-plane approach with a modified technique, local anesthetic was injected under the deep fascia of the penis.ResultsWe recruited 70 children who underwent circumcision at the University Hospital of Udine, Italy, from 1 January 2016 to 1 October 2021: 35 children in the ultrasound-guided DPNB group and 35 children in the control group. Children who received ultrasound-guided DPNB had a statistically significant lower time to discharge from the operating room, did not require mechanical ventilation, maintained spontaneous breathing at all times, received fewer opioids, had lower mean intraoperative arterial pressures, and lower pain levels immediately after surgery.ConclusionUltrasound-guided DPNB associated with sedation and spontaneous breathing is a time-saving, opioid-sparing, safe, and effective strategy for the management of intraoperative and postoperative pain in children undergoing circumcision.Clinical trial registration:ClinicalTrial.gov (NCT04475458, 17 July 2020)

    Association between preoperative evaluation with lung ultrasound and outcome in frail elderly patients undergoing orthopedic surgery for hip fractures: study protocol for an Italian multicenter observational prospective study (LUSHIP)

    Get PDF
    Hip fracture is one of the most common orthopedic causes of hospital admission in frail elderly patients. Hip fracture fixation in this class of patients is considered a high-risk procedure. Preoperative physical examination, plasma natriuretic peptide levels (BNP, Pro-BNP), and cardiovascular scoring systems (ASA-PS, RCRI, NSQIP-MICA) have all been demonstrated to underestimate the risk of postoperative complications. We designed a prospective multicenter observational study to assess whether preoperative lung ultrasound examination can predict better postoperative events thanks to the additional information they provide in the form of "indirect" and "direct" cardiac and pulmonary lung ultrasound signs

    Preoperative plasticity in the functional naming network of patients with left insular gliomas

    No full text
    Plasticity could take place as a compensatory process following brain glioma growth. Only a few studies specifically explored plasticity in patients affected by a glioma invading the left insula; even more, plasticity of the insular cortex in task-based functional language network is almost unexplored.In the current study, we explored potential plasticity in a consecutive series of 22 patients affected by a glioma centered to the left insula, by comparing their preoperative object-naming functional network with that of a group of healthy controls. After having controlled for demographic variables, fMRI results showed that patients vs. controls activated a cluster in the right, contralesional pars triangularis including the Broca’s area. On the other hand, controls did not significantly activate any brain region more than patients. At behavioral level, patients retained a generally preserved naming performance as well as a proficient language processing profile.These findings suggest that involvement of language-specific areas in the healthy hemisphere could help compensate for the left, affected insula, thus allowing preservation of the naming functions. Results are commented in relation to lesion site, naming performance, and potential relevance for neurosurgery

    Pre-Surgery Cognitive Performance and Voxel-Based Lesion-Symptom Mapping in Patients with Left High-Grade Glioma

    No full text
    (1) Background: The literature on the effects of high-grade glioma (HGG) growth on cognition is still scarce. (2) Method: A consecutive series of 85 patients with HGG involving the left hemisphere underwent an extended neuropsychological evaluation prior to surgery. Voxel-based lesion-symptom mapping (VLSM) was used to identify regions related to cognitive performance. (3) Results: The patients’ mean level of pre-surgery accuracy was overall high. They showed the greatest difficulties in language with tasks such as naming (42.1% of patients impaired on nouns and 61.4% on verbs), reading (36.3% on words and 32.7% on pseudo-words), auditory lexical decisions (43.9%) and writing (41.3%) being most frequently impaired. VLSM analysis revealed anatomically separated areas along the temporal cortex and the white matter related to impairments on the different tasks, with voxels commonly shared by all tasks restricted to a small region in the ventral superior and middle temporal gyrus. (4) Conclusions: High-grade glioma affects cognition; nonetheless, lesions do not cause diffuse deficits but selectively impact the different language sub-domains along the ventral stream and the dorsal stream for language processing

    The mental simulation of state/psychological stimuli in anxiety disorders: A 3T fMRI study

    No full text
    Mental imagery plays an important role in cognitive and emotional processes, therefore it might contribute to psychopathology in affective disorders. Distressive intrusive imagery is a core feature of anxiety disorders, but the underlying neurobiology remains unexplored. Here, we examined the functional brain mechanisms involved in state/psychological imagery in individuals with anxiety disorders.Functional Magnetic Resonance Imaging (fMRI) was used to assess the brain circuits involved in state/psychological (vs. action) imagery controlled by letter detection on the same stimuli in 33 individuals with anxiety disorders relative to 33 healthy controls.Patients were faster than controls in processing state/psychological stimuli and in general in the imagery task. We found that the left superior frontal gyrus was differentially activated by the state/psychological (vs. action) imagery (vs. letter detection) in the anxious individuals vs. healthy controls.We suggest that this area, which is involved in processing of state/psychological semantic information, appears deregulated during imagery in subjects with anxiety disorders. Our study provided the first evidence of both behavioral and brain functional alterations during imagery, highlighting a key role of the left superior frontal gyrus
    corecore