2,940 research outputs found

    Lipid-modulated assembly of magnetized iron-filled carbon nanotubes in millimeter-scale structures

    No full text
    Biomolecule-functionalized carbon nanotubes (CNTs) combine the molecular recognition properties of biomaterials with the electrical properties of nanoscale solid state transducers. Application of this hybrid material in bioelectronic devices requires the development of methods for the reproducible self-assembly of CNTs into higher-order structures in an aqueous environment. To this end, we have studied pattern formation of lipid-coated Fe-filled CNTs, with lengths in the 1–5 ”m range, by controlled evaporation of aqueous CNT-lipid suspensions. Novel diffusion limited aggregation structures composed of end-to-end oriented nanotubes were observed by optical and atomic force microscopy. Significantly, the lateral dimension of assemblies of magnetized Fe-filled CNTs was in the millimeter range. Control experiments in the absence of lipids and without magnetization indicated that the formation of these long linear nanotube patterns is driven by a subtle interplay between radial flow forces in the evaporating droplet, lipid-modulated van der Waals forces, and magnetic dipole–dipole interactions. Keywords

    Time Evolution of tunneling and decoherence: soluble model

    Get PDF
    Decoherence effects associated to the damping of a tunneling two-level system are shown to dominate the tunneling probability at short times in strong coupling regimes in the context of a soluble model. A general decomposition of tunneling rates in dissipative and unitary parts is implemented. Master equation treatments fail to describe the model system correctly when more than a single relaxation time is involved

    Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies

    Full text link
    The large magnitude and the sign correlation effect in the parity non-conserving resonant scattering of epithermal neutrons from 232^{232}Th is discussed in terms of a non-collective 2p−1h2p-1h local doorway model. General conclusions are drawn as to the probability of finding large parity violation effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.

    Teor relativo de ĂĄgua em cultivares de soja sob trĂȘs nĂ­veis de disponibilidade hĂ­drica no solo.

    Get PDF
    bitstream/item/71799/1/ID-30972.pd

    Dissipative collisions in 16^{16}O + 27^{27}Al at Elab_{lab}=116 MeV

    Full text link
    The inclusive energy distributions of fragments (3≀\leqZ≀\leq7) emitted in the reaction 16^{16}O + 27^{27}Al at Elab=E_{lab} = 116 MeV have been measured in the angular range Ξlab\theta_{lab} = 15∘^\circ - 115∘^\circ. A non-linear optimisation procedure using multiple Gaussian distribution functions has been proposed to extract the fusion-fission and deep inelastic components of the fragment emission from the experimental data. The angular distributions of the fragments, thus obtained, from the deep inelastic component are found to fall off faster than those from the fusion-fission component, indicating shorter life times of the emitting di-nuclear systems. The life times of the intermediate di-nuclear configurations have been estimated using a diffractive Regge-pole model. The life times thus extracted (∌1−5×10−22\sim 1 - 5\times 10^{-22} Sec.) are found to decrease with the increase in the fragment charge. Optimum Q-values are also found to increase with increasing charge transfer i.e. with the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl
    • 

    corecore