2,208 research outputs found

    Charge dynamics in thermally and doping induced insulator-metal transitions of (Ti1-xVx)2O3

    Full text link
    Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by measurements of charge transport and optical conductivity spectra in a wide temperature range of 2-600K with the focus on the thermally and doping induced insulator-metal transitions (IMTs). The optical conductivity peaks for the interband transitions in the 3d t2g manifold are observed in the both insulating and metallic states, while their large variation (by ~0.4 eV) with change of temperature and doping level scales with that of the Ti-Ti dimer bond length, indicating the weakened singlet bond in the course of IMTs. The thermally and V-doping induced IMTs are driven with the increase in carrier density by band-crossing and hole-doping, respectively, in contrast to the canonical IMT of correlated oxides accompanied by the whole collapse of the Mott gap.Comment: 4 pages, 4 figure

    Coexistence of long-ranged charge and orbital order and spin-glass state in single-layered manganites with weak quenched disorder

    Full text link
    The relationship between orbital and spin degrees of freedom in the single-crystals of the hole-doped Pr1−x_{1-x}Ca1+x_{1+x}MnO4_4, 0.3 ≤\leq xx ≤\leq 0.7, has been investigated by means of ac-magnetometry and charge transport. Even though there is no cation ordering on the AA-site, the quenched disorder is extremely weak in this system due to the very similar ionic size of Pr3+^{3+} and Ca2+^{2+}. A clear asymmetric response of the system to the under- (respective over-) hole doping was observed. The long-ranged charge-orbital order established for half doping (xx=0.5) subsists in the over-doping case (xx >> 0.5), albeit rearranged to accommodate the extra holes introduced in the structure. The charge-orbital order is however destabilized by the presence of extra localized electrons (under-doping, xx << 0.5), leading to its disappearance below xx=0.35. We show that in an intermediate under-doped region, with 0.35 ≤\leq xx << 0.5, the ``orbital-master spin-slave'' relationship commonly observed in half-doped manganites does not take place. The long-ranged charge-orbital order is not accompanied by an antiferromagnetic transition at low temperatures, but by a frustrated short-ranged magnetic state bringing forth a spin-glass phase. We discuss in detail the nature and origin of this spin-glass state, which, as in the half-doped manganites with large quenched disorder, is not related to the macroscopic phase separation observed in crystals with minor defects or impurities.Comment: EPL style; 6 pages, 5 figure
    • …
    corecore