290 research outputs found
JAXA EARTH OBSERVATION DASHBOARD WITH COG AND WMS/WMTSS
JAXA has developed and implemented earth observation (EO) dashboard jointly with ESA and NASA. The development of the JAXA dashboard, along with the "Earth-graphy" website and the newly developed "JAXA Earth API" service, demonstrate JAXA's commitment to providing climate change and earth science information to users worldwide. The EO dashboard serves as a platform to deliver valuable data and information related to climate change. The WMS/WMTS technology allows users to visualize and interact with geospatial information by providing web-based mapping services. This technology enhances the user experience by enabling the display of satellite imagery, overlays, and other geospatial data layers within the EO dashboard. To further facilitate the efficient use of satellite data, JAXA has developed the JAXA Earth API service. This service offers a user-friendly interface for accessing and utilizing JAXA's Earth observation satellite image data. By providing an easy-to-use format, JAXA aims to promote the effective utilization of satellite data and encourage its widespread use. Overall, the development and operation of the JAXA dashboard, with its integration of COG format data, WMS/WMTS technology, Python-based API. This paper introduces the status of development of JAXA Earth Observation dashboard with COG format data, WMS/WMTS technology, phyton based API and JAXA Earth Observation missions
Effects of Metabotropic Glutamate Receptor 3 Genotype on Phonetic Mismatch Negativity
BACKGROUND: The genetic and molecular basis of glutamatergic dysfunction is one key to understand schizophrenia, with the identification of an intermediate phenotype being an essential step. Mismatch negativity (MMN) or its magnetic counterpart, magnetic mismatch field (MMF) is an index of preattentive change detection processes in the auditory cortex and is generated through glutamatergic neurotransmission. We have previously shown that MMN/MMF in response to phoneme change is markedly reduced in schizophrenia. Variations in metabotropic glutamate receptor (GRM3) may be associated with schizophrenia, and has been shown to affect cortical function. Here we investigated the effect of GRM3 genotypes on phonetic MMF in healthy men. METHODS: MMF in response to phoneme change was recorded using magnetoencephalography in 41 right-handed healthy Japanese men. Based on previous genetic association studies in schizophrenia, 4 candidate SNPs (rs6465084, rs2299225, rs1468412, rs274622) were genotyped. RESULTS: GRM3 rs274622 genotype variations significantly predicted MMF strengths (pβ=β0.009), with C carriers exhibiting significantly larger MMF strengths in both hemispheres compared to the TT subjects. CONCLUSIONS: These results suggest that variations in GRM3 genotype modulate the auditory cortical response to phoneme change in humans. MMN/MMF, particularly those in response to speech sounds, may be a promising and sensitive intermediate phenotype for clarifying glutamatergic dysfunction in schizophrenia
Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development
Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species
Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs
We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS
Identification and Characterization of Novel Genotoxic Stress-Inducible Nuclear Long Noncoding RNAs in Mammalian Cells
Whole transcriptome analyses have revealed a large number of novel transcripts including long and short noncoding RNAs (ncRNAs). Currently, there is great interest in characterizing the functions of the different classes of ncRNAs and their relevance to cellular processes. In particular, nuclear long ncRNAs may be involved in controlling various aspects of biological regulation, such as stress responses. By a combination of bioinformatic and experimental approaches, we identified 25 novel nuclear long ncRNAs from 6,088,565 full-length human cDNA sequences. Some nuclear long ncRNAs were conserved among vertebrates, whereas others were found only among primates. Expression profiling of the nuclear long ncRNAs in human tissues revealed that most were expressed ubiquitously. A subset of the identified nuclear long ncRNAs was induced by the genotoxic agents mitomycin C or doxorubicin, in HeLa Tet-off cells. There were no commonly altered nuclear long ncRNAs between mitomycin C- and doxorubicin-treated cells. These results suggest that distinct sets of nuclear long ncRNAs play roles in cellular defense mechanisms against specific genotoxic agents, and that particular long ncRNAs have the potential to be surrogate indicators of a specific cell stress
Gene Expression Studies in Major Depression
The dramatic technical advances in methods to measure gene expression on a genome-wide level thus far have not been paralleled by breakthrough discoveries in psychiatric disordersβincluding major depression (MD)βusing these hypothesis-free approaches. In this review, we first describe the methodologic advances made in gene expression analysis, from quantitative polymerase chain reaction to next-generation sequencing. We then discuss issues in gene expression experiments specific to MD, ranging from the choice of target tissues to the characterization of the case group. We provide a synopsis of the gene expression studies published thus far for MD, with a focus on studies using mRNA microarray methods. Finally, we discuss possible new strategies for the gene expression studies in MD that circumvent some of the addressed issues
Ablation of Mrds1/Ofcc1 Induces Hyper-Ξ³-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice
Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as βthe Japan Mouse Clinicβ. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum Ξ³-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-Ξ³-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-Ξ³-glutamyl transpeptidasemia and schizophrenia
- β¦