13 research outputs found

    Autosomal dominant inheritance of rapidly progressive amyotrophic lateral sclerosis due to a truncation mutation in the fused in sarcoma (FUS) gene.

    No full text
    Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) account for 4 - 5% of familial cases of amyotrophic lateral sclerosis (ALS). We describe the identification and in vitro cellular characterization of a genetic mutation in a family in which the index case, and subsequently her two children, each developed rapidly progressive ALS at a young age and died within a year of onset. Exome capture and sequencing revealed a mutation in the FUS gene consisting of a 2-bp deletion, c.1509_1510delAG, resulting in a predicted truncated protein, p.G504Wfs * 12, lacking the nuclear localization signal. Expression of this mutation in HEK293 and NSC-34 cells demonstrated severe cytoplasmic mislocalization of mutant FUS, and colocalization with stress granules when compared to wild-type, R521C and P525L mutant FUS. This study provides further evidence of a broad correlation between clinical severity of FUS-related ALS and mislocalization of the protein to the cytoplasm

    Calcium: first messenger

    No full text

    TNFα reverse signaling promotes sympathetic axon growth and target innervation

    No full text
    Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα reverse signaling in the nervous system to our knowledge for the first time and show that it has a crucial role in establishing sympathetic innervation. During postnatal development, sympathetic axons express TNFα as they grow and branch in their target tissues, which in turn express TNF receptor 1 (TNFR1). In culture, soluble forms of TNFR1 act directly on postnatal sympathetic axons to promote growth and branching by a mechanism that depends on membrane-integrated TNFα and on downstream activation of ERK. Sympathetic innervation density is substantially lower in several tissues in postnatal and adult mice lacking either TNFα or TNFR1. These findings reveal that target-derived TNFR1 acts as a reverse-signaling ligand for membrane-integrated TNFα to promote growth and branching of sympathetic axons
    corecore