8 research outputs found

    Towards the development of an EIT-based stretchable sensor for multi-touch industrial human-computer interaction systems

    Get PDF
    In human-computer interaction studies, an interaction is often considered as a kind of information or discrete internal states of an individual that can be transmitted in a loss-free manner from people to computing interfaces (or robotic interfaces) and vice-versa. This project aims to investigate processes capable of communicating and cooperating by adjusting their schedules to match the evolving execution circumstances, in a way that maximise the quality of their joint activities. By enabling human-computer interactions, the process will emerge as a framework based on the concept of expectancy, demand, and need of the human and computer together, for understanding the interplay between people and computers. The idea of this work is to utilise touch feedback from humans as a channel for communication thanks to an artificial sensitive skin made of a thin, flexible, and stretchable material acting as transducer. As a proof of concept, we demonstrate that the first prototype of our artificial sensitive skin can detect surface contacts and show their locations with an image reconstructing the internal electrical conductivity of the sensor

    Interfacial load monitoring and failure detection in total joint replacements via piezoresistive bone cement and electrical impedance tomography

    No full text
    © 2020 IOP Publishing Ltd. Aseptic loosening, or loss of implant fixation, is a common complication following total joint replacement. Revision surgeries cost the healthcare system over $8 billion annually in the United States. Despite the prevalence of aseptic loosening, timely and accurate detection remains a challenge because traditional imaging modalities, such as plain radiographs, struggle to reliably detect the early stages of implant loosening. Motivated by this challenge, we present a novel approach for in vivo monitoring and failure detection of cemented joint replacements. Poly(methyl methacrylate) (PMMA) bone cement is modified with low volume fractions of chopped carbon fiber (CF) to impart piezoresistive-based self-sensing. Electrical impedance tomography (EIT) is then used to detect and monitor load-induced deformation and fracture of CF/PMMA in a phantom tank. We therefore show that EIT indeed is able to detect loading force on a prosthetic surrogate, distinguish between increasing load magnitudes, detect failure of implant fixation, and even distinguish between cement cracking and cement de-bonding without direct contact to the surrogate. Because EIT is a low-cost, physiologically benign, and potentially real-time imaging modality, the feasibility study herein presented could positively impact orthopedic researchers by providing, via in vivo monitoring, insight into the factors that initiate aseptic loosening

    Gangliosides

    No full text
    corecore