93 research outputs found

    The Cebpd (C/EBPδ) Gene Is Induced by Luteinizing Hormones in Ovarian Theca and Interstitial Cells But Is Not Essential for Mouse Ovary Function

    Get PDF
    The CCAAT/enhancer binding protein (CEBP) family of transcription factors includes five genes. In the ovary, both Cebpa and Cebpb are essential for granulosa cell function. In this study we have explored the role of the Cebpd gene in ovarian physiology by expression and functional studies. Here we report that Cebpd (C/EBPδ) is expressed in the mouse ovary in a highly restricted temporal and spatial pattern. In response to luteinizing hormone (LH/hCG), CEBPD expression is transiently induced in interstitial cells and in theca cells of follicles from the primary to pre-ovulatory stage, and overlaps in part with expression of the alpha-smooth muscle actin protein. Efficient down-regulation of CEBPD was dependent on a functional Cebpb gene. Proliferating human theca cells in culture also express Cebpd. Cells from patients with polycystic ovarian syndrome (PCOS) exhibited higher Cebpd expression levels. However, deletion of Cebpd in mice had no overt effect on ovarian physiology and reproductive function. Very little is known at present about the molecular mechanisms underlying theca/interstitial cell functions. The expression pattern of CEBPD reported here identifies a novel functional unit of mouse theca cells of primary through tertiary follicles responding to LH/hCG together with a subset of interstitial cells. This acute stimulation of CEBPD expression may be exploited to further characterize the hormonal regulation and function of theca and interstitial cells

    Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    Get PDF
    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Effects of Shear Forces and Pressure on Blood Vessel Function and Metabolism in a Perfusion Bioreactor.

    Get PDF
    Bovine saphenous veins (BSV) were incubated in a perfusion bioreactor to study vessel wall metabolism and wall structure under tissue engineering conditions. Group 1 vessels were perfused for 4 or 8 days. The viscosity of the medium was increased to that of blood in group 2. Group 3 vessels were additionally strained with luminal pressure. Groups 1-d through 3-d were similar except that BSV were endothelium-denuded before perfusion. Groups 1-a through 3-a used native vessels at elevated flow rates. Group 3 vessels responded significantly better to noradrenaline on day 4, whereas denuded vessels showed attenuated responses (p < 0.001). Tetrazolium dye reduction did not depend on perfusion conditions or time except for denuded vessels. pO(2) gradients across the vessels were independent of time and significantly higher in group 2 (p < 0.001). BSV converted glucose stoichiometrically to lactate except vessels of groups 3, 1-d, and 3-d which released more lactate than glucose could supply (p < 0.001). Group 1 vessels as well as all vessels perfused with elevated flow rates showed a loss of endothelial cells after 4 days, whereas group 2 and 3 vessels retained most of the endothelium. These data suggest that vessel metabolism was not limited by oxygen supply. Shear forces did not affect glucose metabolism but increased oxygen consumption and endothelial cell survival. Luminal pressure caused the utilization of energy sources other than glucose, as long as the endothelium was intact. Therefore, vessel metabolism needs to be monitored during tissue engineering procedures which challenge the constructs with mechanical stimuli

    Perfusable vascular networks

    No full text

    Exploring the feasibility of delivering standardized genomic care using ophthalmology as an example

    Get PDF
    Purpose: Broadening access to genomic testing and counseling will be necessary to realize the benefits of personalized health care. This study aimed to assess the feasibility of delivering a standardized genomic care model for inherited retinal dystrophy (IRD) and of using selected measures to quantify its impact on patients. Methods: A pre-/post- prospective cohort study recruited 98 patients affected by IRD to receive standardized multidisciplinary care. A checklist was used to assess the fidelity of the care process. Three patient-reported outcome measures—the Genetic Counselling Outcome Scale (GCOS-24), the ICEpop CAPability measure for Adults (ICECAP-A), and the EuroQol 5-dimension questionnaire (EQ-5D)—and a resource-use questionnaire were administered to investigate rates of missingness, ceiling effects, and changes over time. Results: The care model was delivered consistently. Higher rates of missingness were found for the genetic-specific measure (GCOS-24). Considerable ceiling effects were observed for the generic measure (EQ-5D). The ICECAP-A yielded less missing data without significant ceiling effects. It was feasible to use telephone interviews for follow-up data collection. Conclusion: The study highlighted challenges and solutions associated with efforts to standardize genomic care for IRD. The study identified appropriate methods for a future definitive study to assess the clinical effectiveness and cost-effectiveness of the care model
    • …
    corecore