365 research outputs found
Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles
Background:
Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;).
Methodology/Principal Findings:
We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods.
Conclusions/Significance:
Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms
The emergence of endothermy in the black-footed and Laysan albatrosses
Eggs with pip-holes of the black-footed ( Diomedea nigripes ) and Laysan ( Diomedea immutabilis ) albatrosses were exposed to various air temperatures in the range 20–35°C in order to detect signs of incipient endothermy in late embryos. No evidence of endothermy was found. In contrast, the O 2 consumption of most hatchlings increased in response to cooling, the O 2 consumption at an air temperature of 25° C exceeding that between 34 and 35°C by 40%. In a minority of hatchlings this response was not seen. It was suggested that endothermy may develop at some time during the 24 h after hatching.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47131/1/360_2004_Article_BF00346445.pd
A pragmatic harm reduction approach to manage a large outbreak of wound botulism in people who inject drugs, Scotland 2015
Abstract Background People who inject drugs (PWID) are at an increased risk of wound botulism, a potentially fatal acute paralytic illness. During the first 6 months of 2015, a large outbreak of wound botulism was confirmed among PWID in Scotland, which resulted in the largest outbreak in Europe to date. Methods A multidisciplinary Incident Management Team (IMT) was convened to conduct an outbreak investigation, which consisted of enhanced surveillance of cases in order to characterise risk factors and identify potential sources of infection. Results Between the 24th of December 2014 and the 30th of May 2015, a total of 40 cases were reported across six regions in Scotland. The majority of the cases were male, over 30 and residents in Glasgow. All epidemiological evidence suggested a contaminated batch of heroin or cutting agent as the source of the outbreak. There are significant challenges associated with managing an outbreak among PWID, given their vulnerability and complex addiction needs. Thus, a pragmatic harm reduction approach was adopted which focused on reducing the risk of infection for those who continued to inject and limited consequences for those who got infected. Conclusions The management of this outbreak highlighted the importance and need for pragmatic harm reduction interventions which support the addiction needs of PWID during an outbreak of spore-forming bacteria. Given the scale of this outbreak, the experimental learning gained during this and similar outbreaks involving spore-forming bacteria in the UK was collated into national guidance to improve the management and investigation of future outbreaks among PWID
MDCK Cystogenesis Driven by Cell Stabilization within Computational Analogues
The study of epithelial morphogenesis is fundamental to increasing our
understanding of organ function and disease. Great progress has been made
through study of culture systems such as Madin-Darby canine kidney (MDCK) cells,
but many aspects of even simple morphogenesis remain unclear. For example, are
specific cell actions tightly coupled to the characteristics of the cell's
environment or are they more often cell state dependent? How does the single
lumen, single cell layer cyst consistently emerge from a variety of cell
actions? To improve insight, we instantiated in silico analogues that used
hypothesized cell behavior mechanisms to mimic MDCK cystogenesis. We tested them
through in vitro experimentation and quantitative validation. We observed novel
growth patterns, including a cell behavior shift that began around day five of
growth. We created agent-oriented analogues that used the cellular Potts model
along with an Iterative Refinement protocol. Following several refinements, we
achieved a degree of validation for two separate mechanisms. Both survived
falsification and achieved prespecified measures of similarity to cell culture
properties. In silico components and mechanisms mapped to in vitro counterparts.
In silico, the axis of cell division significantly affects lumen number without
changing cell number or cyst size. Reducing the amount of in silico luminal cell
death had limited effect on cystogenesis. Simulations provide an observable
theory for cystogenesis based on hypothesized, cell-level operating
principles
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
Primary brain T-cell lymphoma of the lymphoblastic type presenting as altered mental status
The authors present a case of a 56-year-old man with altered mental status. Magnetic resonance imaging (MRI) of the brain revealed non-enhancing abnormalities on T2 and FLAIR imaging in the brainstem, cerebellum, and cerebrum. Immunohistochemisty demonstrated precursor T-cell lymphoblastic lymphoma. After treatment with methotrexate, he improved clinically without focal sensorimotor deficits and with improving orientation. MRI showed almost complete resolution of brainstem and cerebral lesions. To the authors’ knowledge, there are only five previous reports of primary central nervous system T-cell lymphoblastic lymphoma. Since treatable, it deserves consideration in patients with altered mental status and imaging abnormalities that include diffuse, non-enhancing changes with increased signal on T2-weighted images
Adult Romantic Attachment, Negative Emotionality, and Depressive Symptoms in Middle Aged Men: A Multivariate Genetic Analysis
Adult romantic attachment styles reflect ways of relating in close relationships and are associated with depression and negative emotionality. We estimated the extent to which dimensions of romantic attachment and negative emotionality share genetic or environmental risk factors in 1,237 middle-aged men in the Vietnam Era Twin Study of Aging (VETSA). A common genetic factor largely explained the covariance between attachment-related anxiety, attachment-related avoidance, depressive symptoms, and two measures of negative emotionality: Stress-Reaction (anxiety), and Alienation. Multivariate results supported genetic and environmental differences in attachment. Attachment-related anxiety and attachment-related avoidance were each influenced by additional genetic factors not shared with other measures; the genetic correlation between the attachment measure-specific genetic factors was 0.41, indicating some, but not complete overlap of genetic factors. Genetically informative longitudinal studies on attachment relationship dimensions can help to illuminate the role of relationship-based risk factors in healthy aging
2,4-Diaminopyrimidines as Potent Inhibitors of Trypanosoma brucei and Identification of Molecular Targets by a Chemical Proteomics Approach
The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT) or sleeping sickness, a fatal disease affecting nearly half a million people in sub-Saharan Africa. Current treatments for HAT have very poor safety profiles and are difficult to administer. There is an urgent need for new, safe and effective treatments for sleeping sickness. This work describes the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide or SCYX-5070, as potent inhibitors of T. brucei growth in vitro and also in animal models for HAT. To determine the parasite proteins responsible for interaction with SCYX-5070 and related compounds, affinity pull-downs were performed followed by sequence analysis and parasite genome database searching. The work revealed that mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) are the major proteins specifically bound to the immobilized compound, suggesting their potential participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. These data strongly support the use of 2,4-diminipyrimidines as leads for the development of new drug candidates for the treatment of HAT
Analysis of circulating hem-endothelial marker RNA levels in preterm infants
<p>Abstract</p> <p>Background</p> <p>Circulating endothelial cells may serve as novel markers of angiogenesis. These include a subset of hem-endothelial progenitor cells that play a vital role in vascular growth and repair. The presence and clinical implications of circulating RNA levels as an expression for hematopoietic and endothelial-specific markers have not been previously evaluated in preterm infants. This study aims to determine circulating RNA levels of hem-endothelial marker genes in peripheral blood of preterm infants and begin to correlate these findings with prenatal complications.</p> <p>Methods</p> <p>Peripheral blood samples from seventeen preterm neonates were analyzed at three consecutive post-delivery time points (day 3–5, 10–15 and 30). Using quantitative reverse transcription-polymerase chain reaction we studied the expression patterns of previously established hem-endothelial-specific progenitor-associated genes (<it>AC133, Tie-2, Flk-1 (VEGFR2) and Scl/Tal1</it>) in association with characteristics of prematurity and preterm morbidity.</p> <p>Results</p> <p>Circulating <it>Tie-2 </it>and <it>SCL/Tal1 </it>RNA levels displayed an inverse correlation to gestational age (GA). We observed significantly elevated <it>Tie-2 </it>levels in preterm infants born to mothers with amnionitis, and in infants with sustained brain echogenicity on brain sonography. Other markers showed similar expression patterns yet we could not demonstrate statistically significant correlations.</p> <p>Conclusion</p> <p>These preliminary findings suggest that circulating RNA levels especially <it>Tie2 </it>and <it>SCL </it>decline with maturation and might relate to some preterm complication. Further prospective follow up of larger cohorts are required to establish this association.</p
Motion dazzle and camouflage as distinct anti-predator defenses.
BACKGROUND: Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. RESULTS: Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. CONCLUSIONS: Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …